State-of-health estimation for lithium-ion batteries based on Kullback-Leibler divergence and a retentive network☆

被引:0
|
作者
Chen, Guanxu [1 ,2 ]
Yang, Fangfang [1 ,2 ]
Peng, Weiwen [1 ,2 ]
Fan, Yuqian [3 ]
Lyu, Ximin [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen Campus, Guangzhou 518107, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou, Guangdong, Peoples R China
[3] Henan Inst Sci & Technol, Sch Comp Sci & Technol, Xinxiang 453003, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Kullback-Leibler divergence; Retentive network; State-of-health estimation; INCREMENTAL CAPACITY ANALYSIS; ON-BOARD STATE; ENTROPY; CHARGE; CELLS;
D O I
10.1016/j.apenergy.2024.124266
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate state-of-health (SOH) estimation is crucial for the lithium-ion battery industry, as it underpins the safety, durability, and reliability of lithium-ion batteries. Currently, most researchers use various methods of health indicator (HI) extraction for the SOH estimation of batteries. However, these methods may require certain expertise and prior knowledge to achieve accurate modeling, being affected by measurement noise and other factors. To solve the abovementioned problems, three Kullback-Leibler (KL) divergence features based on partial voltage sequences are proposed as new HIs that are independent of prior knowledge and strongly correlated with SOH. Moreover, a modified retentive network is proposed to enhance SOH estimation accuracy and better utilize HIs than traditional deep learning methods, which have high training costs and insufficient accuracy. To ensure consistent extraction of KL divergence features across various experimental conditions and time intervals, a B-spline algorithm is utilized for interpolation. The effectiveness of the proposed method is validated through analysis of Pearson correlation coefficients and experiments conducted in four dimensions. Additionally, the potential of using the proposed method to compress data on the cloud-side is explored.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Constant current charging time based fast state-of-health estimation for lithium-ion batteries
    Lin, Chuanping
    Xu, Jun
    Shi, Mingjie
    Mei, Xuesong
    ENERGY, 2022, 247
  • [32] State-of-Health Estimation of Lithium-ion Batteries Based on WOA-CNN-LSTM-Attention
    Li, Zhiwei
    Li, Yong
    Liao, Chenglin
    Zhang, Chengzhong
    Wang, Liye
    Wang, Lifang
    2023 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYTICS, ICCCBDA, 2023, : 572 - 578
  • [33] State-of-health estimation of lithium-ion battery based on interval capacity
    Yang, Qingxia
    Xu, Jun
    Cao, Binggang
    Xu, Dan
    Li, Xiuqing
    Wang, Bin
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2342 - 2347
  • [34] Online State-of-Health Estimation for NMC Lithium-Ion Batteries Using an Observer Structure
    Neunzling, Jan
    Winter, Hanno
    Henriques, David
    Fleckenstein, Matthias
    Markus, Torsten
    BATTERIES-BASEL, 2023, 9 (10):
  • [35] Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
    He, Zhiwei
    Gao, Mingyu
    Ma, Guojin
    Liu, Yuanyuan
    Chen, Sanxin
    JOURNAL OF POWER SOURCES, 2014, 267 : 576 - 583
  • [36] Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
    Lin, Chuanping
    Xu, Jun
    Mei, Xuesong
    ENERGY STORAGE MATERIALS, 2023, 54 : 85 - 97
  • [37] Analysis of State-of-Health Estimation Approaches and Constraints for Lithium-Ion Batteries in Electric Vehicles
    Vaghela, Rohan
    Ramani, Pooja
    Sarda, Jigar
    Hui, Kueh Lee
    Sain, Mangal
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2024, 2024
  • [38] Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation
    Wang, Huan
    Li, Yan-Fu
    Zhang, Ying
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 188
  • [39] An Estimation Method of Relative State-of-Health for Lithium-Ion Batteries Using Morlet Wavelet
    Zhao Y.
    Xu J.
    Wang H.
    Mei X.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (12): : 97 - 103and130
  • [40] State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis
    Li, Yuanyuan
    Sheng, Hanmin
    Cheng, Yuhua
    Stroe, Daniel-Ioan
    Teodorescu, Remus
    APPLIED ENERGY, 2020, 277