Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation

被引:4
|
作者
Wang, Huan [1 ]
Li, Yan-Fu [1 ]
Zhang, Ying [1 ]
机构
[1] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
来源
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Lithium-ion batteries; Prognostic and health management; Capacity prediction; Spiking neural network; NETWORK;
D O I
10.1016/j.rser.2023.113728
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
State-of-health (SOH) estimation of batteries is crucial for ensuring the safety of energy storage systems. Prediction models based on external information (current, voltage, etc.) and artificial neural networks (ANN) are effective solutions. However, external information easily interferes, and the ANN-based model has data dependence, high energy consumption, and insufficient cognitive ability. This motivates us to utilize precise battery physical and chemical degradation information and brain-inspired spiking neural networks (SNNs) for accurate SOH estimation. Therefore, this study proposes a bioinspired spiking spatiotemporal attention neural network (SSA-Net) framework for battery health state monitoring by utilizing full-life-cycle electrochemical impedance spectroscopy (EIS). SSA-Net perfectly models brain neurons' information transmission mechanism and neuron dynamics, thereby endowing it with efficient spatiotemporal feature processing capabilities and low power consumption. Based on the designed spiking residual architecture, SSA-Net constructs a deep spiking information encoding framework achieving high gradient transfer efficiency. More importantly, this study proposes a novel SNN-based spiking spatiotemporal attention module, which realizes the enhancement of useful spiking features and discards worthless information through an adaptive spiking feature selection mechanism. Experimental results show that SSA-Net effectively extracts electrochemical features associated with battery degradation, facilitating precise modeling of the nonlinear relationship between EIS data and SOH and achieving competitive performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries
    Bao, Xinyuan
    Chen, Liping
    Lopes, Antonio M.
    Li, Xin
    Xie, Siqiang
    Li, Penghua
    Chen, YangQuan
    ENERGY, 2023, 278
  • [2] State-of-Health Estimation of Lithium-ion Batteries Based on WOA-CNN-LSTM-Attention
    Li, Zhiwei
    Li, Yong
    Liao, Chenglin
    Zhang, Chengzhong
    Wang, Liye
    Wang, Lifang
    2023 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYTICS, ICCCBDA, 2023, : 572 - 578
  • [3] Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries
    Zhao, Zhibin
    Liu, Bingchen
    Wang, Fujin
    Zheng, Shiyu
    Yu, Qiuyu
    Zhai, Zhi
    Chen, Xuefeng
    Journal of Energy Storage, 2025, 105
  • [4] A Computationally Efficient Approach for the State-of-Health Estimation of Lithium-Ion Batteries
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    ENERGIES, 2023, 16 (14)
  • [5] A Review of State-of-health Estimation of Lithium-ion Batteries: Experiments and Data
    Zhou, Ruomei
    Fu, Shasha
    Peng, Weiwen
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [6] Implementation of State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries
    Lin, Chang-Hua
    Wang, Chien-Ming
    Ho, Chien-Yeh
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 4790 - 4795
  • [7] State-of-Charge Estimation with State-of-Health Calibration for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Moo, Chin-Sien
    ENERGIES, 2017, 10 (07):
  • [8] State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles—A Review
    Zhang, Jianyu
    Li, Kang
    Energies, 2024, 17 (22)
  • [9] State-of-health estimation of lithium-ion batteries based on QPSO-BPNN
    Yongming Yao
    Fei Li
    Haofa Li
    Junchi Liu
    Xindi Wang
    Tianyu Li
    Ionics, 2025, 31 (2) : 1437 - 1449
  • [10] Domain generalization-based state-of-health estimation of lithium-ion batteries
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Li, Xin
    Kong, Huifang
    Chai, Yi
    Li, Penghua
    JOURNAL OF POWER SOURCES, 2024, 610