AI-empowered next-generation multiscale climate modelling for mitigation and adaptation

被引:2
|
作者
Eyring, Veronika [1 ,2 ]
Gentine, Pierre [3 ]
Camps-Valls, Gustau [4 ]
Lawrence, David M. [5 ]
Reichstein, Markus [6 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[2] Univ Bremen, Inst Environm Phys IUP, Bremen, Germany
[3] Columbia Univ, Dept Earth & Environm Engn, New York, NY USA
[4] Univ Valencia, Image Proc Lab, Valencia, Spain
[5] Natl Ctr Atmospher Res, Boulder, CO USA
[6] Max Planck Inst Biogeochem, Jena, Germany
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
INTERCOMPARISON PROJECT SCENARIOMIP; EARTH SYSTEM; UNCERTAINTY QUANTIFICATION; SIMULATIONS; PERMAFROST; FEEDBACKS; LAND;
D O I
10.1038/s41561-024-01527-w
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Earth system models have been continously improved over the past decades, but systematic errors compared with observations and uncertainties in climate projections remain. This is due mainly to the imperfect representation of subgrid-scale or unknown processes. Here we propose a next-generation Earth system modelling approach with artificial intelligence that calls for accelerated models, machine-learning integration, systematic use of Earth observations and modernized infrastructures. The synergistic approach will allow faster and more accurate policy-relevant climate information delivery. We argue a multiscale approach is needed, making use of kilometre-scale climate models and improved coarser-resolution hybrid Earth system models that include essential Earth system processes and feedbacks yet are still fast enough to deliver large ensembles for better quantification of internal variability and extremes. Together, these can form a step change in the accuracy and utility of climate projections, meeting urgent mitigation and adaptation needs of society and ecosystems in a rapidly changing world. A multiscale Earth system modelling approach that integrates machine learning could pave the way for improved climate projections and support actionable climate science.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Towards a multiscale crop modelling framework for climate change adaptation assessment
    Peng, Bin
    Guan, Kaiyu
    Tang, Jinyun
    Ainsworth, Elizabeth A.
    Asseng, Senthold
    Bernacchi, Carl J.
    Cooper, Mark
    Delucia, Evan H.
    Elliott, Joshua W.
    Ewert, Frank
    Grant, Robert F.
    Gustafson, David, I
    Hammer, Graeme L.
    Jin, Zhenong
    Jones, James W.
    Kimm, Hyungsuk
    Lawrence, David M.
    Li, Yan
    Lombardozzi, Danica L.
    Marshall-Colon, Amy
    Messina, Carlos D.
    Ort, Donald R.
    Schnable, James C.
    Vallejos, C. Eduardo
    Wu, Alex
    Yin, Xinyou
    Zhou, Wang
    [J]. NATURE PLANTS, 2020, 6 (04) : 338 - 348
  • [42] Developing the next-generation climate system models: challenges and achievements
    Slingo, Julia
    Bates, Kevin
    Nikiforakis, Nikos
    Piggott, Matthew
    Roberts, Malcolm
    Shaffrey, Len
    Stevens, Ian
    Vidale, Pier Luigi
    Weller, Hilary
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1890): : 815 - 831
  • [43] Next-Generation Breeding Strategies for Climate-Ready Crops
    Razzaq, Ali
    Kaur, Parwinder
    Akhter, Naheed
    Wani, Shabir Hussain
    Saleem, Fozia
    [J]. FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [44] Towards a multiscale crop modelling framework for climate change adaptation assessment
    Bin Peng
    Kaiyu Guan
    Jinyun Tang
    Elizabeth A. Ainsworth
    Senthold Asseng
    Carl J. Bernacchi
    Mark Cooper
    Evan H. Delucia
    Joshua W. Elliott
    Frank Ewert
    Robert F. Grant
    David I Gustafson
    Graeme L. Hammer
    Zhenong Jin
    James W. Jones
    Hyungsuk Kimm
    David M. Lawrence
    Yan Li
    Danica L. Lombardozzi
    Amy Marshall-Colon
    Carlos D. Messina
    Donald R. Ort
    James C. Schnable
    C. Eduardo Vallejos
    Alex Wu
    Xinyou Yin
    Wang Zhou
    [J]. Nature Plants, 2020, 6 : 338 - 348
  • [45] Artificial Intelligence Empowered QoS-Oriented Network Association for Next-Generation Mobile Networks
    Yuan, Xin
    Yao, Haipeng
    Wang, Jingjing
    Mai, Tianle
    Guizani, Mohsen
    [J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (03) : 856 - 870
  • [46] Agent-based Modelling of Climate Adaptation and Mitigation Options in Agriculture
    Berger, Thomas
    Troost, Christian
    [J]. JOURNAL OF AGRICULTURAL ECONOMICS, 2014, 65 (02) : 323 - 348
  • [47] Dynamic Functional Split Adaptation in Next-Generation Radio Access Networks
    Alba, Alberto Martinez
    Kellerer, Wolfgang
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (03): : 3239 - 3263
  • [48] Energy-aware Resource Adaptation for Next-Generation Network Equipment
    Bolla, Raffaele
    Bruschi, Roberto
    Davoli, Franco
    [J]. GLOBECOM 2009 - 2009 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-8, 2009, : 1689 - 1694
  • [49] Analysis and Possible Mitigation of Interferences Between Present and Next-Generation Marine Radars
    Galati, Gaspare
    Pavan, Gabriele
    De Palo, Francesco
    [J]. SMART CITIES, GREEN TECHNOLOGIES, AND INTELLIGENT TRANSPORT SYSTEMS, 2017, 738 : 296 - 322
  • [50] A comprehensive survey of security threats and their mitigation techniques for next-generation SDN controllers
    Han, Tao
    Jan, Syed Rooh Ullah
    Tan, Zhiyuan
    Usman, Muhammad
    Jan, Mian Ahmad
    Khan, Rahim
    Xu, Yongzhao
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (16):