AI-empowered next-generation multiscale climate modelling for mitigation and adaptation

被引:2
|
作者
Eyring, Veronika [1 ,2 ]
Gentine, Pierre [3 ]
Camps-Valls, Gustau [4 ]
Lawrence, David M. [5 ]
Reichstein, Markus [6 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[2] Univ Bremen, Inst Environm Phys IUP, Bremen, Germany
[3] Columbia Univ, Dept Earth & Environm Engn, New York, NY USA
[4] Univ Valencia, Image Proc Lab, Valencia, Spain
[5] Natl Ctr Atmospher Res, Boulder, CO USA
[6] Max Planck Inst Biogeochem, Jena, Germany
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
INTERCOMPARISON PROJECT SCENARIOMIP; EARTH SYSTEM; UNCERTAINTY QUANTIFICATION; SIMULATIONS; PERMAFROST; FEEDBACKS; LAND;
D O I
10.1038/s41561-024-01527-w
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Earth system models have been continously improved over the past decades, but systematic errors compared with observations and uncertainties in climate projections remain. This is due mainly to the imperfect representation of subgrid-scale or unknown processes. Here we propose a next-generation Earth system modelling approach with artificial intelligence that calls for accelerated models, machine-learning integration, systematic use of Earth observations and modernized infrastructures. The synergistic approach will allow faster and more accurate policy-relevant climate information delivery. We argue a multiscale approach is needed, making use of kilometre-scale climate models and improved coarser-resolution hybrid Earth system models that include essential Earth system processes and feedbacks yet are still fast enough to deliver large ensembles for better quantification of internal variability and extremes. Together, these can form a step change in the accuracy and utility of climate projections, meeting urgent mitigation and adaptation needs of society and ecosystems in a rapidly changing world. A multiscale Earth system modelling approach that integrates machine learning could pave the way for improved climate projections and support actionable climate science.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Synergy and oxygen adaptation for development of next-generation probiotics
    Muhammad Tanweer Khan
    Chinmay Dwibedi
    Daniel Sundh
    Meenakshi Pradhan
    Jamie D. Kraft
    Robert Caesar
    Valentina Tremaroli
    Mattias Lorentzon
    Fredrik Bäckhed
    [J]. Nature, 2023, 620 : 381 - 385
  • [22] Next-Generation Full Duplex Networking Systems Empowered by Reconfigurable Intelligent Surfaces
    Chen, Yingyang
    Li, Yuncong
    Wen, Miaowen
    Zhang, Duoying
    Jiao, Bingli
    Ding, Zhiguo
    Tsiftsis, Theodoros A.
    Poor, H. Vincent
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (06) : 6045 - 6060
  • [23] Challenges and Opportunities of Edge AI for Next-Generation Implantable BMIs
    Shaeri, MohammadAli
    Afzal, Arshia
    Shoaran, Mahsa
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, : 190 - 193
  • [24] Envisioning the Next-Generation AI Coding Assistants: Insights & Proposals
    Khanh Nghiem
    Anh Minh Nguyen
    Bui, Nghi D. Q.
    [J]. PROCEEDINGS OF THE 2024 FIRST IDE WORKSHOP, IDE 2024, 2024, : 115 - 117
  • [25] ATHENA: Enabling Codesign for Next-Generation AI/ML Architectures
    Plagge, Mark
    Feinberg, Ben
    McFarland, John
    Rothganger, Fred
    Agarwal, Sapan
    Awad, Amro
    Hughes, Clayton
    Cardwell, Suma G.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING, ICRC, 2022, : 13 - 23
  • [26] Autonomous GIS: the next-generation AI-powered GIS
    Li, Zhenlong
    Ning, Huan
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (02) : 4668 - 4686
  • [27] Molecular Modelling Hurdle in the Next-Generation Sequencing Era
    Fernandez, Guerau
    Yubero, Delia
    Palau, Francesc
    Armstrong, Judith
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (13)
  • [28] AI-ENABLED NEXT-GENERATION COMMUNICATION NETWORKS: INTELLIGENT AGENT AND AI ROUTER
    Jiang, Chunxiao
    Ge, Ning
    Kuang, Linling
    [J]. IEEE WIRELESS COMMUNICATIONS, 2020, 27 (06) : 129 - 133
  • [30] Designing the next generation of climate adaptation research for development
    Jones, Lindsey
    Harvey, Blane
    Cochrane, Logan
    Cantin, Bernard
    Conway, Declan
    Cornforth, Rosalind J.
    De Souza, Ken
    Kirbyshire, Amy
    [J]. REGIONAL ENVIRONMENTAL CHANGE, 2018, 18 (01) : 297 - 304