Grasping Both Query Relevance and Essential Content for Query-focused Summarization

被引:0
|
作者
Xiong, Ye [1 ]
Kamigaito, Hidetaka [1 ]
Murakami, Soichiro [2 ]
Zhang, Peinan [2 ]
Takamura, Hiroya [1 ]
Okumura, Manabu [1 ]
机构
[1] Tokyo Inst Technol, Tokyo, Japan
[2] CyberAgent Inc, Tokyo, Japan
关键词
Query-focused summarization; Abstractive summarization;
D O I
10.1145/3626772.3657958
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Numerous effective methods have been developed to improve query-focused summarization (QFS) performance, e.g., pre-trained model-based and query-answer relevance-based methods. However, these methods still suffer from missing or redundant information due to the inability to capture and effectively utilize the interrelationship between the query and the source document, as well as between the source document and its generated summary, resulting in the summary being unable to answer the query or containing additional unrequired information. To mitigate this problem, we propose an end-to-end hierarchical two-stage summarization model, that first predicts essential content, and then generates a summary by emphasizing the predicted important sentences while maintaining separate encodings for the query and the source, so that it can comprehend not only the query itself but also the essential information in the source. We evaluated the proposed model on two QFS datasets, and the results indicated its overall effectiveness and that of each component.
引用
收藏
页码:2452 / 2456
页数:5
相关论文
共 50 条
  • [31] Exploring heterogeneous features for query-focused summarization of categorized community answers
    Wei, Wei
    Ming, ZhaoYan
    Nie, Liqiang
    Li, Guohui
    Li, Jianjun
    Zhu, Feida
    Shang, Tianfeng
    Luo, Changyin
    INFORMATION SCIENCES, 2016, 330 : 403 - 423
  • [32] Hierarchical Variational Network for User-Diversified & Query-Focused Video Summarization
    Jiang, Pin
    Han, Yahong
    ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2019, : 202 - 206
  • [33] Exploring actor–object relationships for query-focused multi-document summarization
    Mohammadreza Valizadeh
    Pavel Brazdil
    Soft Computing, 2015, 19 : 3109 - 3121
  • [34] Query-Focused Video Summarization: Dataset, Evaluation, and A Memory Network Based Approach
    Sharghi, Aidean
    Laurel, Jacob S.
    Gong, Boqing
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2127 - 2136
  • [35] Constructing Query-Focused Summarization Dataset AMTQFSum Based on ChatGPT and Prompt Engineering
    Jinling, Shang
    Jianyong, Zhang
    Data Analysis and Knowledge Discovery, 2024, 8 (8-9) : 122 - 132
  • [36] Lexical Similarity Based Query-Focused Summarization Using Artificial Immune Systems
    Katiyar, Sulabh
    Borgohain, Samir
    ARTIFICIAL INTELLIGENCE PERSPECTIVES AND APPLICATIONS (CSOC2015), 2015, 347 : 287 - 296
  • [37] Query-focused multi-document text summarization using fuzzy inference
    Agarwal, Raksha
    Chatterjee, Niladri
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (05) : 4641 - 4652
  • [38] SDbQfSum: Query-focused summarization framework based on diversity and text semantic analysis
    Mohamed, Muhidin
    Oussalah, Mourad
    Chang, Victor
    EXPERT SYSTEMS, 2024, 41 (01)
  • [39] A Novel Contextual Topic Model for Query-focused Multi-document Summarization
    Yang, Guangbing
    2014 IEEE 26TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2014, : 576 - 583
  • [40] Review on Query-focused Multi-document Summarization (QMDS) with Comparative Analysis
    Roy, Prasenjeet
    Kundu, Suman
    ACM COMPUTING SURVEYS, 2024, 56 (01)