Grasping Both Query Relevance and Essential Content for Query-focused Summarization

被引:0
|
作者
Xiong, Ye [1 ]
Kamigaito, Hidetaka [1 ]
Murakami, Soichiro [2 ]
Zhang, Peinan [2 ]
Takamura, Hiroya [1 ]
Okumura, Manabu [1 ]
机构
[1] Tokyo Inst Technol, Tokyo, Japan
[2] CyberAgent Inc, Tokyo, Japan
关键词
Query-focused summarization; Abstractive summarization;
D O I
10.1145/3626772.3657958
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Numerous effective methods have been developed to improve query-focused summarization (QFS) performance, e.g., pre-trained model-based and query-answer relevance-based methods. However, these methods still suffer from missing or redundant information due to the inability to capture and effectively utilize the interrelationship between the query and the source document, as well as between the source document and its generated summary, resulting in the summary being unable to answer the query or containing additional unrequired information. To mitigate this problem, we propose an end-to-end hierarchical two-stage summarization model, that first predicts essential content, and then generates a summary by emphasizing the predicted important sentences while maintaining separate encodings for the query and the source, so that it can comprehend not only the query itself but also the essential information in the source. We evaluated the proposed model on two QFS datasets, and the results indicated its overall effectiveness and that of each component.
引用
收藏
页码:2452 / 2456
页数:5
相关论文
共 50 条
  • [21] QuerySum: A Multi-Document Query-Focused Summarization Dataset Augmented with Similar Query Clusters
    Liu, Yushan
    Wang, Zili
    Yuan, Ruifeng
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 17, 2024, : 18725 - 18732
  • [22] A Compare-Aggregate Model with External Knowledge for Query-Focused Summarization
    Ya, Jing
    Liu, Tingwen
    Guo, Li
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT II, 2020, 12343 : 68 - 83
  • [23] Query-focused Multi-document Summarization Using Cloud Model
    Chen, Jinguang
    He, Tingting
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (03): : 951 - 956
  • [24] Query-focused Multi-documents Summarization Using Genetic Algorithm
    Tang, Jun
    Li, Jichu
    COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, 2011, 460-461 : 48 - 53
  • [25] Query-Focused Scenario Construction
    Wang, Su
    Durrett, Greg
    Erk, Katrin
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 2712 - 2722
  • [26] Data Augmentation for Abstractive Query-Focused Multi-Document Summarization
    Pasunuru, Ramakanth
    Celikyilmaz, Asli
    Galley, Michel
    Xiong, Chenyan
    Zhang, Yizhe
    Bansal, Mohit
    Gao, Jianfeng
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 13666 - 13674
  • [27] Using query expansion in graph-based approach for query-focused multi-document summarization
    Zhao, Lin
    Wu, Lide
    Huang, Xuanjing
    INFORMATION PROCESSING & MANAGEMENT, 2009, 45 (01) : 35 - 41
  • [28] Applying regression models to query-focused multi-document summarization
    Ouyang, You
    Li, Wenjie
    Li, Sujian
    Lu, Qin
    INFORMATION PROCESSING & MANAGEMENT, 2011, 47 (02) : 227 - 237
  • [29] Query-Focused Multi-document Summarization Based on Concept Importance
    Zheng, Hai-Tao
    Guo, Ji-Min
    Jiang, Yong
    Xia, Shu-Tao
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2016, PT II, 2016, 9652 : 443 - 453
  • [30] Query-focused summarization with the context-graph information fusion transformer
    Park, Choongwon
    Ko, Youngjoong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 241