Experimental Study on Thermal Runaway Characteristics of High-Nickel Ternary Lithium-Ion Batteries under Normal and Low Pressures

被引:0
|
作者
Jin, Ye [1 ]
Meng, Di [1 ]
Zhao, Chen-Xi [1 ]
Yu, Jia-Ling [1 ]
Wang, Xue-Hui [1 ]
Wang, Jian [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Peoples R China
来源
BATTERIES-BASEL | 2024年 / 10卷 / 08期
关键词
high-Ni ternary lithium-ion battery; thermal runaway; low pressure; fire hazards; aviation applications; STRUCTURAL-CHANGES; AMBIENT-PRESSURE; FIRE BEHAVIORS; METAL-OXIDE; HIGH-POWER; CELLS; MECHANISM; STATE;
D O I
10.3390/batteries10080287
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High-nickel (Ni) ternary lithium-ion batteries (LIBs) are widely used in low-pressure environments such as in the aviation industry, but their attribute of high energy density poses significant fire hazards, especially under low pressure where thermal runaway behavior is complex, thus requiring relevant experiments. This study investigates the thermal runaway characteristics of LiNi0.8Mn0.1Co0.1O2 (NCM811) 18650 LIBs at different states of charge (SOCs) (75%, 100%) under various ambient pressures (101 kPa, 80 kPa, 60 kPa, 40 kPa). The results show that, as the pressure is decreased from 101 kPa to 40 kPa, the onset time of thermal runaway is extended by 28.2 s for 75% SOC and by 40.8 s for 100% SOC; accordingly, the onset temperature of thermal runaway increases by 19.3 degrees C for 75% SOC and by 33.5 degrees C for 100% SOC; the maximum surface temperature decreases by 70.8 degrees C for 75% SOC and by 68.2 degrees C for 100% SOC. The cell mass loss and loss rate slightly decrease with reduced pressure. However, ambient pressure has little impact on the time and temperature of venting as well as the voltage drop time. SEM/EDS analysis verifies that electrolyte evaporates faster under low pressure. Furthermore, the oxygen concentration is lower under low pressure, which consequently leads to a delay in thermal runaway. This study contributes to understanding thermal runaway characteristics of high-Ni ternary LIBs and provides guidance for their safe application in low-pressure aviation environments.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries
    Lee, Steven
    Su, Laisuo
    Mesnier, Alex
    Cui, Zehao
    Manthiram, Arumugam
    JOULE, 2023, 7 (11) : 2430 - 2444
  • [42] Thermal characteristics of thermal runaway for pouch lithium-ion battery with different state of charges under various ambient pressures
    Sun, Qiang
    Liu, Hangxin
    Zhi, Maoyong
    Chen, Xiantao
    Lv, Pengfei
    He, Yuanhua
    JOURNAL OF POWER SOURCES, 2022, 527
  • [43] Study of thermal runaway and the combustion behavior of lithium-ion batteries overcharged with high current rates
    Liu, Zhen
    Guo, Xinrong
    Meng, Na
    Yu, Zhanglong
    Yang, He
    THERMOCHIMICA ACTA, 2022, 715
  • [44] Investigations on the essential causes of the degrading properties of ternary lithium-ion batteries with different nickel content during thermal runaway stage
    Zhang, Weiguo
    Zhang, Jiangyun
    Hu, Yanxin
    Zhang, Li
    Zhang, Wenjun
    Chen, Youpeng
    Zhang, Guoqing
    Jiang, Liqin
    Dai, Zhite
    Wen, Yuliang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (03):
  • [45] Mechanical properties and thermal runaway study of automotive lithium-ion power batteries
    Yalong Xu
    Fei Liu
    Jiale Guo
    Meng Li
    Bing Han
    Ionics, 2022, 28 : 107 - 116
  • [46] Experimental study on thermal runaway and vented gases of lithium-ion cells
    Yuan, Liming
    Dubaniewicz, Tom
    Zlochower, Isaac
    Thomas, Rick
    Rayyan, Naseem
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2020, 144 : 186 - 192
  • [47] Mechanical properties and thermal runaway study of automotive lithium-ion power batteries
    Xu, Yalong
    Liu, Fei
    Guo, Jiale
    Li, Meng
    Han, Bing
    IONICS, 2022, 28 (01) : 107 - 116
  • [48] Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries
    Abada, Sara
    Petit, Martin
    Lecocq, Amandine
    Marlair, Guy
    Sauvant-Moynot, Valerie
    Huet, Francois
    JOURNAL OF POWER SOURCES, 2018, 399 : 264 - 273
  • [49] Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
    Liu, Jingjing
    Wang, Zhirong
    Gong, Junhui
    Liu, Kai
    Wang, Hao
    Guo, Linsheng
    MATERIALS, 2017, 10 (03):
  • [50] Thermal Runaway of Lithium-Ion Batteries Triggered by Electromagnetic Interference
    Dubois, Eric Ravindranath
    Kherbouchi, Hocine
    Bosson, Joel
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2020, 62 (05) : 2096 - 2100