On the Teichmüller space of acute triangles

被引:0
|
作者
Miyachi, Hideki [1 ]
Ohshika, Ken'ichi [2 ]
Papadopoulos, Athanase [3 ,4 ]
机构
[1] Kanazawa Univ, Coll Sci & Engn, Sch Math & Phys, Kanazawa, Ishikawa 9201192, Japan
[2] Gakushuin Univ, Dept Math, 1-5-1 Mejiro,Toshima Ku, Tokyo, 1718588, Japan
[3] Univ Strasbourg, Inst Rech Math Avancee, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[4] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
来源
关键词
Thurston's asymmetric metric; Lipschitz metric; Extreme Lipschitz maps; Stretch locus; Teichm & uuml; ller theory; Space of Euclidean triangles; Geodesics; Finsler structure; TEICHMULLER SPACE;
D O I
10.1007/s00605-024-02017-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of the analogue of Thurston's metric on the Teichm & uuml;ller space of Euclidean triangles which was started by Saglam-Papadopoulos (Minimal stretch maps between Euclidean triangles, 2022). By direct calculation, we give explicit expressions of the distance function and the Finsler structure of the metric restricted to the subspace of acute triangles. We deduce from the form of the Finsler unit sphere a result on the infinitesimal rigidity of the metric. We give a description of the maximal stretching loci for a family of extreme Lipschitz maps.
引用
收藏
页码:649 / 666
页数:18
相关论文
共 50 条
  • [1] Teichmüller contraction in the Teichmüller space of a closed set in the sphere
    Sudeb Mitra
    Israel Journal of Mathematics, 2001, 125 : 45 - 51
  • [2] Rigidity of Teichmüller space
    Georgios Daskalopoulos
    Chikako Mese
    Inventiones mathematicae, 2021, 224 : 791 - 916
  • [3] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space
    Hideki Miyachi
    Geometriae Dedicata, 2008, 137 : 113 - 141
  • [4] On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space
    D. Alessandrini
    L. Liu
    A. Papadopoulos
    W. Su
    Monatshefte für Mathematik, 2016, 179 : 165 - 189
  • [5] Integrable Teichmüller space
    Xueping Liu
    Yuliang Shen
    Mathematische Zeitschrift, 2022, 302 : 2233 - 2251
  • [6] A quantum Teichmüller space
    V. V. Fock
    L. O. Chekhov
    Theoretical and Mathematical Physics, 1999, 120 : 1245 - 1259
  • [7] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II
    Hideki Miyachi
    Geometriae Dedicata, 2013, 162 : 283 - 304
  • [8] A BINARY INFINITESIMAL FORM OF TEICHMLLER METRIC AND ANGLES IN AN ASYMPTOTIC TEICHMLLER SPACE
    吴艳
    漆毅
    Acta Mathematica Scientia, 2016, (02) : 334 - 344
  • [9] Comparisons of metrics on Teichmüller space
    Zongliang Sun
    Lixin Liu
    Chinese Annals of Mathematics, Series B, 2010, 31 : 71 - 84
  • [10] Quantization of the universal Teichmüller space
    A. G. Sergeev
    Proceedings of the Steklov Institute of Mathematics, 2008, 263