(1, p)-Sobolev spaces based on strongly local Dirichlet forms

被引:0
|
作者
Kuwae, Kazuhiro [1 ]
机构
[1] Fukuoka Univ, Dept Appl Math, Fukuoka, Japan
关键词
carre du champ operator; Dirichlet form; minimal E-dominant measure; normal contraction; quasi-regular; strongly local; E-dominant measure; (1; p)-Sobolev space; SUB-MARKOVIAN SEMIGROUPS; P-POTENTIAL-THEORY; LIPSCHITZ FUNCTIONS; EQUIVALENCE; ENERGY;
D O I
10.1002/mana.202400025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the framework of quasi-regular strongly local Dirichlet form (E, D(E)) on L-2(X; m) admitting minimal E-dominant measure mu, we construct a natural p-energy functional (E-p, D(E-p)) on L-p(X; m) and (1, p)-Sobolev space (H-1,H-p(X), parallel to center dot parallel to(H1,p)) for p is an element of]1, +infinity[. In this paper, we establish the Clarkson-type inequality for (H-1,H-p(X), parallel to center dot parallel to(H1,p)). As a consequence, (H-1,H-p(X), parallel to center dot parallel to(H1,p)) is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of (H-1,H-p(X), parallel to center dot parallel to(H1,p)), we prove that (generalized) normal contraction operates on (E-p, D (E-p)), which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that (1, p)- capacity Cap(1,p) (A) < infinity for open set A admits an equilibrium potential e(A) is an element of D(E-p) with 0 = <= e(A) <= 1 m-a.e. and e(A) = 1 m.-a.e. on A.
引用
收藏
页码:3723 / 3740
页数:18
相关论文
共 50 条
  • [41] Boundary representation of Dirichlet forms on discrete spaces
    Keller, Matthias
    Lenz, Daniel
    Schmidt, Marcel
    Schwarz, Michael
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 126 : 109 - 143
  • [42] On uniqueness problem for local Dirichlet forms
    Kawabata, T
    Takeda, M
    OSAKA JOURNAL OF MATHEMATICS, 1996, 33 (04) : 881 - 893
  • [43] Global properties of Dirichlet forms on discrete spaces
    Schmidt, Marcel
    DISSERTATIONES MATHEMATICAE, 2017, (522) : 1 - 43
  • [44] On the domains of Dirichlet forms on metric measure spaces
    Yang, Meng
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (02) : 2129 - 2154
  • [45] On the domains of Dirichlet forms on metric measure spaces
    Meng Yang
    Mathematische Zeitschrift, 2022, 301 : 2129 - 2154
  • [46] Orthogonal projections in the local Dirichlet spaces
    Fricain, Emmanuel
    Mashreghi, Javad
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025,
  • [47] Dirichlet boundary value problems for uniformly elliptic equations in modified local generalized Sobolev-Morrey spaces
    Guliyev, Vagif S.
    Gadjiev, Tahir S.
    Galandarova, Shahla
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (71) : 1 - 17
  • [48] L1-Poincaré and Sobolev inequalities for differential forms in Euclidean spaces
    Annalisa Baldi
    Bruno Franchi
    Pierre Pansu
    Science China Mathematics, 2019, 62 : 1029 - 1040
  • [49] L1-Poincare and Sobolev inequalities for differential forms in Euclidean spaces
    Baldi, Annalisa
    Franchi, Bruno
    Pansu, Pierre
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (06) : 1029 - 1040
  • [50] Sobolev-Dirichlet problem for quasilinear elliptic equations in generalized Orlicz-Sobolev spaces
    Benyaiche, Allami
    Khlifi, Ismail
    POSITIVITY, 2021, 25 (03) : 819 - 841