L1-Poincaré and Sobolev inequalities for differential forms in Euclidean spaces

被引:0
|
作者
Annalisa Baldi
Bruno Franchi
Pierre Pansu
机构
[1] Università di Bologna,Dipartimento di Matematica
[2] Université Paris-Sud,Laboratoire de Mathématiques d’Orsay
[3] CNRS,undefined
[4] Université Paris-Saclay,undefined
来源
Science China Mathematics | 2019年 / 62卷
关键词
differential forms; Sobolev-Poincaré inequalities; homotopy formula; 58A10; 26D15; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove Poincaré and Sobolev inequalities for differential forms in L1(ℝn). The singular integral estimates that it is possible to use for Lp, p > 1, are replaced here with inequalities which go back to Bourgain and Brezis (2007).
引用
收藏
页码:1029 / 1040
页数:11
相关论文
共 50 条
  • [1] L1-Poincare and Sobolev inequalities for differential forms in Euclidean spaces
    Baldi, Annalisa
    Franchi, Bruno
    Pansu, Pierre
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (06) : 1029 - 1040
  • [2] Dirichlet Forms, Poincaré Inequalities, and the Sobolev Spaces of Korevaar and Schoen
    Pekka Koskela
    Nageswari Shanmugalingam
    Jeremy T. Tyson
    Potential Analysis, 2004, 21 : 241 - 262
  • [3] L~1-Poincaré and Sobolev inequalities for differential forms in Euclidean spaces Dedicated to Professor Jean-Yves Chemin on the Occasion of His 60th Birthday
    Annalisa Baldi
    Bruno Franchi
    Pierre Pansu
    Science China(Mathematics), 2019, 62 (06) : 1029 - 1040
  • [4] L1-Poincare inequalities for differential forms on Euclidean spaces and Heisenberg groups
    Baldi, Annalisa
    Franchi, Bruno
    Pansu, Pierre
    ADVANCES IN MATHEMATICS, 2020, 366
  • [5] Sharp L1-Poincaré inequalities correspond to optimal hypersurface cuts
    Stefan Steinerberger
    Archiv der Mathematik, 2015, 105 : 179 - 188
  • [6] Poincaré inequalities in weighted Sobolev spaces
    Wan-yi Wang
    Jiong Sun
    Zhi-ming Zheng
    Applied Mathematics and Mechanics, 2006, 27 : 125 - 132
  • [7] Poincaré inequalities and the sharp maximal inequalities with Lφ-norms for differential forms
    Yueming Lu
    Gejun Bao
    Journal of Inequalities and Applications, 2013
  • [8] Imbedding inequalities for the composite operator in the Sobolev spaces of differential forms
    Hui Bi
    Sun Yuli
    Journal of Inequalities and Applications, 2015
  • [9] Imbedding inequalities for the composite operator in the Sobolev spaces of differential forms
    Hui Bi
    Sun Yuli
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [10] SOBOLEV INEQUALITIES FOR DIFFERENTIAL FORMS
    LOHOUE, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (06): : 277 - 280