Investigating landslide data balancing for susceptibility mapping using generative and machine learning models

被引:0
|
作者
Jiang, Yuhang [1 ,2 ]
Wang, Wei [1 ,2 ]
Zou, Lifang [3 ]
Cao, Yajun [1 ,2 ]
Xie, Wei-Chau [4 ]
机构
[1] Hohai Univ, Geotech Res Inst, Nanjing 210098, Jiangsu, Peoples R China
[2] Hohai Univ, Key Lab Minist Educ Geomech & Embankment Engn, Nanjing 210098, Jiangsu, Peoples R China
[3] Hohai Univ, Sch Earth Sci & Engn, Nanjing 211100, Jiangsu, Peoples R China
[4] Univ Waterloo, Dept Civil & Environm Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金;
关键词
Landslide susceptibility mapping; Conditional Tabular Generative Adversarial Networks; Convolutional Neural Network; Long Short-Term Memory Neural Network; Self-training semi-supervised SVM algorithm; NETWORK;
D O I
10.1007/s10346-024-02352-3
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
With the development and application of machine learning, significant advances have been made in landslide susceptibility mapping. However, due to challenges in actual field landslide investigations, current landslide susceptibility mapping is usually characterized by insufficient landslide samples (positive samples) and low reliability of non-landslide samples (negative samples). Considering Lianghe County in Yunnan Province, China, as an example, this paper aims to research the effectiveness of three oversampling models in generating positive samples for landslides: Conditional Tabular Generative Adversarial Networks (CTGAN), Generative Adversarial Networks (GAN), and the traditional Synthetic Minority Oversampling Technique (SMOTE) algorithms. Additionally, three machine learning methods, including 1D Convolutional Neural Network-Long Short-Term Memory Neural Network (CNN-LSTM), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT) classifiers, are used for landslide susceptibility assessment. We also devise a non-landslide data (negative samples) screening method utilizing a self-trained support vector machine within a semi-supervised framework. The results show that by training on the dataset after negative sample screening, the AUC values for the 1D-CNN-LSTM, RF, and GBDT models have shown significant improvement, increasing from (0.778, 0.869, 0.849) to (0.837, 0.936, 0.877). Compared with the original training set, the prediction accuracy of the three machine learning models is improved after training on the augmented data by CTGAN, GAN, and SMOTE models. The RF model, augmented with 200 positive samples generated by CTGAN, achieves the highest prediction accuracy in the study (AUC = 0.962). The 1D CNN-LSTM model achieves its highest prediction accuracy (AUC = 0.953) when augmented with 200 positive samples from GAN. Similarly, the GBDT model reaches its highest prediction accuracy (AUC = 0.928) when augmented with 200 positive samples created by SMOTE. In addition, the spatial distribution of data indicates that the data generated by the generative adversarial model exhibits higher diversity, which can be used for landslide susceptibility assessment.
引用
收藏
页码:189 / 204
页数:16
相关论文
共 50 条
  • [1] Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data
    Hussain, Muhammad Afaq
    Chen, Zhanlong
    Zheng, Ying
    Zhou, Yulong
    Daud, Hamza
    REMOTE SENSING, 2023, 15 (19)
  • [2] COMPARISON OF DIFFERENT MACHINE LEARNING MODELS FOR LANDSLIDE SUSCEPTIBILITY MAPPING
    Yi, Yaning
    Zhang, Zhijie
    Zhang, Wanchang
    Xu, Chi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9318 - 9321
  • [3] Landslide Susceptibility Mapping using Machine Learning Algorithm
    Hussain, Muhammad Afaq
    Chen, Zhanlong
    Wang, Run
    Shah, Safeer Ullah
    Shoaib, Muhammad
    Ali, Nafees
    Xu, Daozhu
    Ma, Chao
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2022, 8 (02): : 209 - 224
  • [4] Improved landslide susceptibility mapping using unsupervised and supervised collaborative machine learning models
    Su, Chenxu
    Wang, Bijiao
    Lv, Yunhong
    Zhang, Mingpeng
    Peng, Dalei
    Bate, Bate
    Zhang, Shuai
    GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2023, 17 (02) : 387 - 405
  • [5] MACHINE LEARNING-BASED APPROACH FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING MULTIMODAL DATA
    Ma, Xianping
    Pun, Man-On
    Liu, Ming
    Wang, Yang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5174 - 5177
  • [6] Landslide susceptibility mapping using XGBoost machine learning method
    Badola, Shubham
    Mishra, Varun Narayan
    Parkash, Surya
    2023 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE FOR GEOANALYTICS AND REMOTE SENSING, MIGARS, 2023, : 148 - 151
  • [7] Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey
    Ado, Moziihrii
    Amitab, Khwairakpam
    Maji, Arnab Kumar
    Jasinska, Elzbieta
    Gono, Radomir
    Leonowicz, Zbigniew
    Jasinski, Michal
    REMOTE SENSING, 2022, 14 (13)
  • [8] Effects of non-landslide sampling strategies on machine learning models in landslide susceptibility mapping
    Gu, Tengfei
    Duan, Ping
    Wang, Mingguo
    Li, Jia
    Zhang, Yanke
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [9] High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data
    Sharma, Nirdesh
    Saharia, Manabendra
    Ramana, G. V.
    CATENA, 2024, 235
  • [10] Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment
    Viet-Ha Nhu
    Mohammadi, Ayub
    Shahabi, Himan
    Bin Ahmad, Baharin
    Al-Ansari, Nadhir
    Shirzadi, Ataollah
    Clague, John J.
    Jaafari, Abolfazl
    Chen, Wei
    Nguyen, Hoang
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (14) : 1 - 23