Investigating landslide data balancing for susceptibility mapping using generative and machine learning models

被引:0
|
作者
Jiang, Yuhang [1 ,2 ]
Wang, Wei [1 ,2 ]
Zou, Lifang [3 ]
Cao, Yajun [1 ,2 ]
Xie, Wei-Chau [4 ]
机构
[1] Hohai Univ, Geotech Res Inst, Nanjing 210098, Jiangsu, Peoples R China
[2] Hohai Univ, Key Lab Minist Educ Geomech & Embankment Engn, Nanjing 210098, Jiangsu, Peoples R China
[3] Hohai Univ, Sch Earth Sci & Engn, Nanjing 211100, Jiangsu, Peoples R China
[4] Univ Waterloo, Dept Civil & Environm Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金;
关键词
Landslide susceptibility mapping; Conditional Tabular Generative Adversarial Networks; Convolutional Neural Network; Long Short-Term Memory Neural Network; Self-training semi-supervised SVM algorithm; NETWORK;
D O I
10.1007/s10346-024-02352-3
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
With the development and application of machine learning, significant advances have been made in landslide susceptibility mapping. However, due to challenges in actual field landslide investigations, current landslide susceptibility mapping is usually characterized by insufficient landslide samples (positive samples) and low reliability of non-landslide samples (negative samples). Considering Lianghe County in Yunnan Province, China, as an example, this paper aims to research the effectiveness of three oversampling models in generating positive samples for landslides: Conditional Tabular Generative Adversarial Networks (CTGAN), Generative Adversarial Networks (GAN), and the traditional Synthetic Minority Oversampling Technique (SMOTE) algorithms. Additionally, three machine learning methods, including 1D Convolutional Neural Network-Long Short-Term Memory Neural Network (CNN-LSTM), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT) classifiers, are used for landslide susceptibility assessment. We also devise a non-landslide data (negative samples) screening method utilizing a self-trained support vector machine within a semi-supervised framework. The results show that by training on the dataset after negative sample screening, the AUC values for the 1D-CNN-LSTM, RF, and GBDT models have shown significant improvement, increasing from (0.778, 0.869, 0.849) to (0.837, 0.936, 0.877). Compared with the original training set, the prediction accuracy of the three machine learning models is improved after training on the augmented data by CTGAN, GAN, and SMOTE models. The RF model, augmented with 200 positive samples generated by CTGAN, achieves the highest prediction accuracy in the study (AUC = 0.962). The 1D CNN-LSTM model achieves its highest prediction accuracy (AUC = 0.953) when augmented with 200 positive samples from GAN. Similarly, the GBDT model reaches its highest prediction accuracy (AUC = 0.928) when augmented with 200 positive samples created by SMOTE. In addition, the spatial distribution of data indicates that the data generated by the generative adversarial model exhibits higher diversity, which can be used for landslide susceptibility assessment.
引用
收藏
页码:189 / 204
页数:16
相关论文
共 50 条
  • [21] A comparison of different machine learning models for landslide susceptibility mapping in Rize (Türkiye)
    Bilgilioglu, Hacer
    BALTICA, 2023, 36 (02): : 115 - 132
  • [22] Landslide susceptibility mapping using state-of-the-art machine learning ensembles
    Pham, Binh Thai
    Vu, Vinh Duy
    Costache, Romulus
    Phong, Tran Van
    Ngo, Trinh Quoc
    Tran, Trung-Hieu
    Nguyen, Huu Duy
    Amiri, Mahdis
    Tan, Mai Thanh
    Trinh, Phan Trong
    Le, Hiep Van
    Prakash, Indra
    GEOCARTO INTERNATIONAL, 2022, 37 (18) : 5175 - 5200
  • [23] Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks
    Al-Najjar, Husam A. H.
    Pradhan, Biswajeet
    GEOSCIENCE FRONTIERS, 2021, 12 (02) : 625 - 637
  • [24] Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks
    Husam AHAlNajjar
    Biswajeet Pradhan
    Geoscience Frontiers, 2021, (02) : 625 - 637
  • [25] Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks
    Husam A.H.Al-Najjar
    Biswajeet Pradhan
    Geoscience Frontiers, 2021, 12 (02) : 625 - 637
  • [26] Landslide Susceptibility Mapping Using Single Machine Learning Models: A Case Study from Pithoragarh District, India
    Trinh Quoc Ngo
    Nguyen Duc Dam
    Al-Ansari, Nadhir
    Amiri, Mahdis
    Tran Van Phong
    Prakash, Indra
    Hiep Van Le
    Hanh Bich Thi Nguyen
    Binh Thai Pham
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [27] Landslide Susceptibility Mapping: Machine and Ensemble Learning Based on Remote Sensing Big Data
    Kalantar, Bahareh
    Ueda, Naonori
    Saeidi, Vahideh
    Ahmadi, Kourosh
    Halin, Alfian Abdul
    Shabani, Farzin
    REMOTE SENSING, 2020, 12 (11)
  • [28] An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping
    Ullah, Israr
    Aslam, Bilal
    Shah, Syed Hassan Iqbal Ahmad
    Tariq, Aqil
    Qin, Shujing
    Majeed, Muhammad
    Havenith, Hans-Balder
    LAND, 2022, 11 (08)
  • [29] Susceptibility mapping of groundwater salinity using machine learning models
    Amirhosein Mosavi
    Farzaneh Sajedi Hosseini
    Bahram Choubin
    Fereshteh Taromideh
    Marzieh Ghodsi
    Bijan Nazari
    Adrienn A. Dineva
    Environmental Science and Pollution Research, 2021, 28 : 10804 - 10817
  • [30] Susceptibility mapping of groundwater salinity using machine learning models
    Mosavi, Amirhosein
    Sajedi Hosseini, Farzaneh
    Choubin, Bahram
    Taromideh, Fereshteh
    Ghodsi, Marzieh
    Nazari, Bijan
    Dineva, Adrienn A.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (09) : 10804 - 10817