BINOMIAL SUMS WITH HARMONIC AND FIBONACCI NUMBERS

被引:0
|
作者
Duran, Omer [1 ]
Omur, Nese [1 ]
Koparal, Sibel [2 ]
机构
[1] Kocaeli Univ, Dept Math, TR-41380 Kocaeli, Turkiye
[2] Bursa Uludag Univ, Dept Math, TR-16059 Bursa, Turkiye
来源
关键词
Fibonacci numbers; harmonic numbers; generating function;
D O I
10.46939/J.Sci.Arts-24.2-a13
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we define new sequence Sn(a, n (a, b) with parameters a and b with the help of the generalized harmonic numbers. Also, we get some new sums involving harmonic, Fibonacci and Lucas numbers.
引用
下载
收藏
页码:389 / 398
页数:10
相关论文
共 50 条
  • [41] Fibonacci numbers as sums of two Padovan numbers
    Ana Cecilia García Lomelí
    Santos Hernández Hernández
    Florian Luca
    Afrika Matematika, 2022, 33
  • [42] On a binomial sum for the Fibonacci and related numbers
    Haukkanen, P
    FIBONACCI QUARTERLY, 1996, 34 (04): : 326 - 331
  • [43] A Binomial Sum of Generalized Fibonacci Numbers
    Plaza, Angel
    Smith, Jason L.
    Abel, Ulrich
    Bataille, Michel
    Boyadzhiev, Khristo N.
    Bradie, Brian
    Fedak, I. V.
    Fleischman, Dmitry
    Frontczak, Robert
    Ohtsuka, Hideyuki
    Schumacher, Raphael
    Stadler, Albert
    Terr, David
    FIBONACCI QUARTERLY, 2020, 58 (03): : 275 - 276
  • [44] On the Sums of Reciprocal Generalized Fibonacci Numbers
    Kuhapatanakul, Kantaphon
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (07)
  • [45] Sums of Reciprocals of Squares of Fibonacci Numbers
    Ohtsuka, Hideyuki
    FIBONACCI QUARTERLY, 2012, 50 (03): : 284 - 284
  • [46] Sums of Fibonacci numbers that are perfect powers
    Ziegler, Volker
    QUAESTIONES MATHEMATICAE, 2023, 46 (08) : 1717 - 1742
  • [47] ON SUMS OF FIBONACCI NUMBERS MODULO p
    Garcia, Victor C.
    Luca, Florian
    Mejia Huguet, V. Janitzio
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) : 413 - 419
  • [48] On the Reciprocal Sums of Products of Fibonacci Numbers
    Choo, Younseok
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (03)
  • [49] SUMS OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS
    BERZSENYI, G
    FIBONACCI QUARTERLY, 1975, 13 (04): : 343 - &
  • [50] Alternating Sums of the Reciprocal Fibonacci Numbers
    Wang, Andrew Yezhou
    Yuan, Tingrui
    JOURNAL OF INTEGER SEQUENCES, 2017, 20 (01)