Single imbalanced domain generalization network for intelligent fault diagnosis of compressors in HVAC systems under unseen working conditions

被引:1
|
作者
Wang, Hong [1 ,2 ]
Lin, Jun [1 ]
Zhang, Zijun [2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Management, Xian 710049, Peoples R China
[2] City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
关键词
HVAC system; Fault diagnosis; Neural networks; Data-driven models; Class imbalance;
D O I
10.1016/j.enbuild.2024.114192
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Effective fault diagnosis of compressors in heating, ventilation, and air conditioning (HVAC) systems is critical to ensure service reliability and boost energy efficiency. HVAC compressors are distributed in different areas and work under heterogeneous conditions, which poses emerging challenges to their data-driven modeling. Most existing methods assume multiple category-balanced source domains for model training. Although domain adaptation and generalization methods have emerged to address the data distribution discrepancies in crossdomain fault diagnosis, limited source domains and imbalanced fault categories across domains still constrain the real-world applicability of data-driven models in HVAC compressor fault diagnosis under unseen working conditions. Therefore, this paper studies a significant fault diagnosis problem named single imbalanced domain generalization (SIDG) and proposes a corresponding network (SIDGNet) for intelligent HVAC compressor fault diagnosis. Specifically, a rare fault diagnosis module combined with focal loss is introduced to tackle the class imbalance problem. To achieve better diagnostic boundaries and resist unknown data distribution discrepancies, joint supervised contrastive learning and adversarial learning with specialized data augmentation are introduced as auxiliary modules to improve the robustness and generalizability of SIDGNet. An improved uncertainty-based dynamic weighting mechanism is developed to intelligently balance the weights of module-specific losses during training, which ensures an efficient and stable optimization process. Extensive SIDG fault diagnosis experiments conducted on HVAC compressors demonstrate the superiority of SIDGNet over existing models in SIDG scenarios.
引用
收藏
页数:15
相关论文
共 50 条
  • [2] Mutual-assistance semisupervised domain generalization network for intelligent fault diagnosis under unseen working conditions
    Zhao, Chao
    Shen, Weiming
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 189
  • [3] Deep Mixed Domain Generalization Network for Intelligent Fault Diagnosis Under Unseen Conditions
    Fan, Zhenhua
    Xu, Qifa
    Jiang, Cuixia
    Ding, Steven X.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (01) : 965 - 974
  • [4] A Hybrid Generalization Network for Intelligent Fault Diagnosis of Rotating Machinery Under Unseen Working Conditions
    Han, Te
    Li, Yan-Fu
    Qian, Min
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [5] Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Xu, Meng
    Liu, Yang
    Ding, Xue
    Bian, Wenbin
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 235
  • [6] Domain fuzzy generalization networks for semi-supervised intelligent fault diagnosis under unseen working conditions
    Ren, He
    Wang, Jun
    Zhu, Zhongkui
    Shi, Juanjuan
    Huang, Weiguo
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [7] An Auxiliary Branch Semisupervised Domain Generalization Network for Unseen Working Conditions Bearing Fault Diagnosis
    Zeng, Liang
    Chang, Xinyu
    Chen, Jia
    Wang, Shanshan
    IEEE Sensors Journal, 2024, 24 (24) : 42327 - 42342
  • [8] A novel domain generalization network with multidomain specific auxiliary classifiers for machinery fault diagnosis under unseen working conditions
    Wang, Rui
    Huang, Weiguo
    Lu, Yixiang
    Zhang, Xiao
    Wang, Jun
    Ding, Chuancang
    Shen, Changqing
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 238
  • [9] Stochastic Embedding Domain Generalization Network for Rotating Machinery Fault Diagnosis Under Unseen Operating Conditions
    Su, Zuqiang
    Jiang, Weilong
    Xiong, Zhue
    Hu, Feng
    Yu, Hong
    Qin, Yi
    IEEE SENSORS JOURNAL, 2024, 24 (11) : 17846 - 17855
  • [10] Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions
    Li, Qi
    Chen, Liang
    Kong, Lin
    Wang, Dong
    Xia, Min
    Shen, Changqing
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 234