A novel domain generalization network with multidomain specific auxiliary classifiers for machinery fault diagnosis under unseen working conditions

被引:21
|
作者
Wang, Rui [1 ,2 ]
Huang, Weiguo [1 ,2 ]
Lu, Yixiang [2 ]
Zhang, Xiao [1 ]
Wang, Jun [1 ]
Ding, Chuancang [1 ]
Shen, Changqing [1 ]
机构
[1] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
[2] Anhui Univ, Anhui Engn Lab Human Robot Integrat Syst Equipment, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Machinery fault diagnosis; Deep learning; Domain generalization; Auxiliary classifiers;
D O I
10.1016/j.ress.2023.109463
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The domain adaptation-based intelligent diagnosis approaches have achieved promising performance on diag-nosis tasks under different working conditions. However, these methods rely on a premise that the target data are available in the model training phase. In real industries, collecting interest data from target machines in advance may be infeasible, which greatly restricts the practicality of intelligent diagnosis approaches in reality. To solve this issue, this study proposes a novel domain generalization network for machinery fault diagnosis where in-terest data are completely unavailable during model training. In the proposed network, multiple domain-specific auxiliary classifiers are firstly designed to effectively learn domain-specific features from each source domain, and then, a convolutional auto-encoder module is further constructed to map raw signals into a new feature space where the learned domain-specific features are removed. Meanwhile, with the features outputted by the convolutional auto-encoder, a domain-invariant classifier with inter-domain alignment strategy is designed to learn generalization diagnostic knowledge among different source domains, thereby performing diagnosis tasks under unseen conditions. Experiments on three practical rotary machinery datasets validate the effectiveness of the proposed network, showing that the proposed network is promising for fault diagnosis tasks in practical scenarios.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] An Auxiliary Branch Semisupervised Domain Generalization Network for Unseen Working Conditions Bearing Fault Diagnosis
    Zeng, Liang
    Chang, Xinyu
    Chen, Jia
    Wang, Shanshan
    IEEE Sensors Journal, 2024, 24 (24) : 42327 - 42342
  • [2] A Hybrid Generalization Network for Intelligent Fault Diagnosis of Rotating Machinery Under Unseen Working Conditions
    Han, Te
    Li, Yan-Fu
    Qian, Min
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [3] Stochastic Embedding Domain Generalization Network for Rotating Machinery Fault Diagnosis Under Unseen Operating Conditions
    Su, Zuqiang
    Jiang, Weilong
    Xiong, Zhue
    Hu, Feng
    Yu, Hong
    Qin, Yi
    IEEE SENSORS JOURNAL, 2024, 24 (11) : 17846 - 17855
  • [4] Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Xu, Meng
    Liu, Yang
    Ding, Xue
    Bian, Wenbin
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 235
  • [5] Relationship Transfer Domain Generalization Network for Rotating Machinery Fault Diagnosis Under Different Working Conditions
    Qian, Quan
    Zhou, Jianghong
    Qin, Yi
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (09) : 9898 - 9908
  • [7] Mutual-assistance semisupervised domain generalization network for intelligent fault diagnosis under unseen working conditions
    Zhao, Chao
    Shen, Weiming
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 189
  • [8] Deep Mixed Domain Generalization Network for Intelligent Fault Diagnosis Under Unseen Conditions
    Fan, Zhenhua
    Xu, Qifa
    Jiang, Cuixia
    Ding, Steven X.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (01) : 965 - 974
  • [9] Single imbalanced domain generalization network for intelligent fault diagnosis of compressors in HVAC systems under unseen working conditions
    Wang, Hong
    Lin, Jun
    Zhang, Zijun
    ENERGY AND BUILDINGS, 2024, 312
  • [10] A domain feature decoupling network for rotating machinery fault diagnosis under unseen operating conditions
    Gao, Tianyu
    Yang, Jingli
    Wang, Wenmin
    Fan, Xiaopeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 252