Estimation of underground hydrogen storage capacity in depleted gas reservoirs using CO2 as cushion gas

被引:7
|
作者
He, Youwei [1 ]
Xie, Yixiang [1 ]
Qiao, Yu [1 ]
Qin, Jiazheng [1 ]
Tang, Yong [1 ]
机构
[1] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploitat, Chengdu 610500, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Underground hydrogen storage; Energy storage efficiency; Hydrogen storage capacity; CO; 2; sequestration; Cushion gas; Depleted gas reservoirs; NATURAL HYDROGEN; POROUS-MEDIA; H-2; STORAGE; BOURAKEBOUGOU; POLICY;
D O I
10.1016/j.apenergy.2024.124093
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Underground hydrogen storage (UHS) is an effective means to solve large-scale hydrogen energy storage. The depleted gas reservoirs can be used as the potential UHS targets due to its huge storage space, good sealing ability, and the existing facilities. CO2 can be injected as the cushion gas to reduce the hydrogen loss, improve energy storage efficiency and achieve carbon sequestration. This work proposes a novel method to estimate the hydrogen storage capacity in depleted gas reservoirs using CO2 as cushion gas. The multi-components (H2-CO2CH4-H2O) material balance equations are further developed by integrating the edge/bottom water and water invasion, gas (e.g., CO2, H2, CH4) dissolution in formation water as well as caprock breakthrough and fault instability. The maximum UHS operating pressure can be determined by calculating the caprock-breakthrough pressure and the fault-instability pressure. A numerical model is established to validate the proposed UHS capacity model in this work. The impact of dominated factors on the UHS capacity is discussed. The proposed method has been applied to evaluate the UHS capacity of a depleted gas reservoir in the Sichuan Basin of China. Results show that the model validation verifies the accuracy of the proposed model since the average error is only 1.76% between the analytical model developed in this work and the numerical model. The maximum pressure threshold presents the most significant impact on the UHS capacity, followed by CO2 cushion gas volume, formation temperature and water body size. The maximum pressure threshold of formation is determined to be 42 MPa. The hydrogen storage capacity under different CO2 cushion gas injection conditions is calculated. The UHS capacity is increased by 7.76% and 8.61% with dissolution when VCO2_inj is 3000 x 104 m3 and 4000 x 104 m3. The UHS capacity of Well #P4 is 6076 x 104 m3 when VCO2_inj is 4000 x 104 m3 based on the proposed model in this work. This work provides an effective approach to evaluate the hydrogen storage capacity and improve hydrogen storage efficiency by using CO2 as cushion gas considering caprock breakthrough, fault slip and gas dissolution. The established model provides important references for calculating the storage capacity of gas storage facilities in oil and gas reservoirs with edge and bottom water as well as for gas storage in aquifers.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs
    Hawkes, CD
    Bachu, S
    McLellan, PJ
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 2005, 44 (10): : 52 - 61
  • [42] Hydrogen storage in depleted gas reservoirs: A comprehensive review
    Muhammed, Nasiru Salahu
    Haq, Md Bashirul
    Al Shehri, Dhafer Abdullah
    Al-Ahmed, Amir
    Rahman, Mohammad Mizanur
    Zaman, Ehsan
    Iglauer, Stefan
    FUEL, 2023, 337
  • [43] The effect of gas solubility on the selection of cushion gas for underground hydrogen storage in aquifers
    Amiri, Ismaeil Izadi
    Zivar, Davood
    Ayatollahi, Shahab
    Mahani, Hassan
    JOURNAL OF ENERGY STORAGE, 2024, 80
  • [44] CO2 enhanced gas recovery and sequestration in depleted gas reservoirs: A review
    Hamza, Ahmed
    Hussein, Ibnelwaleed A.
    Al-Marri, Mohammed J.
    Mahmoud, Mohamed
    Shawabkeh, Reyad
    Aparicio, Santiago
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 196
  • [45] Injection rate estimation to numerically assess CO2 sequestration in depleted gas reservoirs
    Raza, Arshad
    Gholami, Raoof
    Rabiei, Minou
    Rasouli, Vamegh
    Rezaee, Reza
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2020, 42 (13) : 1608 - 1617
  • [46] Underground hydrogen storage: Integrated surface facilities and fluid flow modelling for depleted gas reservoirs
    Salmachi, Alireza
    Seyfaee, Ahmad
    Robert, Rohan Jeffry
    Hosseini, Tara
    Nathan, Graham
    Ashman, Peter
    Roberts, Ashley
    Jafarian, Mehdi
    Simon, Catherine
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1055 - 1069
  • [47] Effect of Cushion Gas on Hydrogen/Brine Flow Behavior in Oil-Wet Rocks with Application to Hydrogen Storage in Depleted Oil and Gas Reservoirs
    Mirchi, Vahideh
    Dejam, Morteza
    Alvarado, Vladimir
    Akbarabadi, Morteza
    ENERGY & FUELS, 2023, 37 (19) : 15231 - 15243
  • [48] Maximizing the capacity and benefit of CO2 storage in depleted oil reservoirs
    Sang, Qian
    Yin, Xia
    Pu, Jun
    Qin, Xuejie
    Gou, Feifei
    Fang, Wenchao
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2024, 14 (07) : 2183 - 2197
  • [49] Techno-economic assessment of industrial CO2 storage in depleted shale gas reservoirs
    Tayari, Farid
    Blumsack, Seth
    Dilmore, Robert
    Mohaghegh, Shahab D.
    JOURNAL OF UNCONVENTIONAL OIL AND GAS RESOURCES, 2015, 11 : 82 - 94
  • [50] Preliminary estimation of CO2 storage capacity in gas fields in China
    Liu Yan-feng
    Li Xiao-chun
    Fang Zhi-ming
    Bai Bing
    ROCK AND SOIL MECHANICS, 2006, 27 (12) : 2277 - 2281