Rigidity of flat holonomies

被引:0
|
作者
Besson, Gerard [1 ]
Courtois, Gilles [2 ]
Hersonsky, Sa'ar [3 ]
机构
[1] Univ Grenoble Alpes, CNRS, Inst Fourier, CS 40700, F-38058 Grenoble 09, France
[2] Sorbonne Univ, CNRS, UMR 7586, Inst Math Jussieu Paris Rive Gauche,Fac Sci, F-75252 Paris 05, France
[3] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金
欧洲研究理事会;
关键词
negatively curved Riemannian manifolds; rigidity; horospheres; holonomy; LYAPUNOV EXPONENTS; COCYCLES;
D O I
10.1017/etds.2024.58
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the existence of one horosphere in the universal cover of a closed Riemannian manifold of dimension $n \geq 3$ with strongly $1/4$ -pinched or relatively $1/2$ -pinched sectional curvature, on which the stable holonomy along one horosphere coincides with the Riemannian parallel transport, implies that the manifold is homothetic to a real hyperbolic manifold.
引用
收藏
页码:1048 / 1077
页数:30
相关论文
共 50 条
  • [1] Commuting holonomies and rigidity of holomorphic foliations
    Movasati, Hossein
    Nakai, Isao
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 473 - 478
  • [2] Flat holonomies on automata networks
    Itkis, G
    Levin, LA
    STACS 2006, PROCEEDINGS, 2006, 3884 : 23 - 49
  • [3] Flat equivariant gerbes: holonomies and dualities
    Cheng, Peng
    Melnikov, Ilarion V.
    Minasian, Ruben
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (04)
  • [4] Flat equivariant gerbes: holonomies and dualities
    Peng Cheng
    Ilarion V. Melnikov
    Ruben Minasian
    Journal of High Energy Physics, 2023
  • [5] Flat connections with non-diagonalizable holonomies
    Selivanov, K
    PHYSICS LETTERS B, 1999, 471 (2-3) : 171 - 173
  • [6] Flat metrics, cubic differentials and limits of projective holonomies
    Loftin, John
    GEOMETRIAE DEDICATA, 2007, 128 (01) : 97 - 106
  • [7] Flat metrics, cubic differentials and limits of projective holonomies
    John Loftin
    Geometriae Dedicata, 2007, 128 : 97 - 106
  • [8] An improved cosmic crystallography method to detect holonomies in flat spaces
    Fujii, H.
    Yoshii, Y.
    ASTRONOMY & ASTROPHYSICS, 2011, 529
  • [9] Focal rigidity of flat tori
    Kwakkel, Ferry
    Martens, Marco
    Peixoto, Mauricio
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2011, 83 (04): : 1149 - 1158
  • [10] HOMOTOPY MINIMAL PERIOD SELF-MAPS ON FLAT MANIFOLDS WITH CYCLIC HOLONOMIES
    Liang, Zhibin
    Zhao, Xuezhi
    ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (04) : 645 - 651