机构:
Sorbonne Univ, CNRS, UMR 7586, Inst Math Jussieu Paris Rive Gauche,Fac Sci, F-75252 Paris 05, FranceUniv Grenoble Alpes, CNRS, Inst Fourier, CS 40700, F-38058 Grenoble 09, France
Courtois, Gilles
[2
]
Hersonsky, Sa'ar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Georgia, Dept Math, Athens, GA 30602 USAUniv Grenoble Alpes, CNRS, Inst Fourier, CS 40700, F-38058 Grenoble 09, France
We prove that the existence of one horosphere in the universal cover of a closed Riemannian manifold of dimension $n \geq 3$ with strongly $1/4$ -pinched or relatively $1/2$ -pinched sectional curvature, on which the stable holonomy along one horosphere coincides with the Riemannian parallel transport, implies that the manifold is homothetic to a real hyperbolic manifold.
机构:
Capital Normal Univ, Dept Math, Beijing 100048, Peoples R ChinaCapital Normal Univ, Dept Math, Beijing 100048, Peoples R China
Liang, Zhibin
Zhao, Xuezhi
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Dept Math, Beijing 100048, Peoples R China
Capital Normal Univ, Inst Math & Interdisciplinary Sci, Beijing 100048, Peoples R ChinaCapital Normal Univ, Dept Math, Beijing 100048, Peoples R China