共 50 条
Rigidity of flat holonomies
被引:0
|作者:
Besson, Gerard
[1
]
Courtois, Gilles
[2
]
Hersonsky, Sa'ar
[3
]
机构:
[1] Univ Grenoble Alpes, CNRS, Inst Fourier, CS 40700, F-38058 Grenoble 09, France
[2] Sorbonne Univ, CNRS, UMR 7586, Inst Math Jussieu Paris Rive Gauche,Fac Sci, F-75252 Paris 05, France
[3] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金:
欧洲研究理事会;
关键词:
negatively curved Riemannian manifolds;
rigidity;
horospheres;
holonomy;
LYAPUNOV EXPONENTS;
COCYCLES;
D O I:
10.1017/etds.2024.58
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove that the existence of one horosphere in the universal cover of a closed Riemannian manifold of dimension $n \geq 3$ with strongly $1/4$ -pinched or relatively $1/2$ -pinched sectional curvature, on which the stable holonomy along one horosphere coincides with the Riemannian parallel transport, implies that the manifold is homothetic to a real hyperbolic manifold.
引用
收藏
页码:1048 / 1077
页数:30
相关论文