Flat metrics, cubic differentials and limits of projective holonomies

被引:0
|
作者
John Loftin
机构
[1] Rutgers University Newark,Department of Mathematics and Computer Science
来源
Geometriae Dedicata | 2007年 / 128卷
关键词
Real projective structure; Affine sphere; 57M50; 53A15;
D O I
暂无
中图分类号
学科分类号
摘要
F. Labourie and the author independently have shown that a convex real projective structure on an oriented closed surface S of genus at least two is equivalent to a pair of a conformal structure plus a holomorphic cubic differential. Along certain paths, we find the limiting holonomy of convex real projective structures on a surface S corresponding corresponding to a given fixed conformal structure S and a holomorphic cubic differential λ U0 as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda\to\infty$$\end{document} . We explicitly give part of the data needed to identify the boundary point in Inkang Kim’s compactification of the deformation space of convex real projective structures. The proof follows similar analysis to that studied by Mike Wolf is his application of harmonic map theory to reproduce Thurston’s boundary of Teichmüller space.
引用
收藏
页码:97 / 106
页数:9
相关论文
共 50 条
  • [1] Flat metrics, cubic differentials and limits of projective holonomies
    Loftin, John
    GEOMETRIAE DEDICATA, 2007, 128 (01) : 97 - 106
  • [2] Flat projective structures on surfaces and cubic holomorphic differentials
    Labourie, Francois
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2007, 3 (04) : 1057 - 1099
  • [3] On Conformally Flat Cubic (α,β )-Metrics
    A. Tayebi
    M. Razgordani
    B. Najafi
    Vietnam Journal of Mathematics, 2021, 49 : 987 - 1000
  • [4] On Conformally Flat Cubic (α, β)-Metrics
    Tayebi, A.
    Razgordani, M.
    Najafi, B.
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (04) : 987 - 1000
  • [5] Polynomial cubic differentials and convex polygons in the projective plane
    Dumas, David
    Wolf, Michael
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (06) : 1734 - 1798
  • [6] Polynomial cubic differentials and convex polygons in the projective plane
    David Dumas
    Michael Wolf
    Geometric and Functional Analysis, 2015, 25 : 1734 - 1798
  • [7] Cubic differentials and finite volume convex projective surfaces
    Benoist, Yves
    Hulin, Dominique
    GEOMETRY & TOPOLOGY, 2013, 17 (01) : 595 - 620
  • [8] Special Kahler structures, cubic differentials and hyperbolic metrics
    Haydys, Andriy
    Xu, Bin
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (03):
  • [9] On a class of projective Ricci flat Finsler metrics
    Cheng, Xinyue
    Shen, Yuling
    Ma, Xiaoyu
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (1-2): : 169 - 180
  • [10] Rigidity of flat holonomies
    Besson, Gerard
    Courtois, Gilles
    Hersonsky, Sa'ar
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025, 45 (04) : 1048 - 1077