A triple plasmon-induced transparency terahertz sensor based on graphene metamaterials

被引:0
|
作者
Xiang, Junhong [1 ]
Chen, Tao [1 ]
机构
[1] Guilin Univ Elect Technol, Guangxi Key Lab Automat Detecting Technol & Instru, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene metamaterial; Terahertz; Sensor; Triple plasmon-induced transparency; Polarization-independent;
D O I
10.1016/j.diamond.2024.111608
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A metamaterial-based terahertz sensor design is presented in this paper. The metamaterial unit structure comprises a graphene cross and three sets of graphene strips, which collectively achieve a triple plasmon-induced transparency (PIT) in both polarization directions. The theoretical results based on the Lorentz resonance theoretical model are in good agreement with finite difference time domain (FDTD) simulations. The sensor is polarization-independent and changes in the angle of incidence between 0 degrees and 10 degrees have a negligible impact on the sensing performance. Furthermore, the sensor exhibits a notable slow-light effect, with a maximum sensitivity of 1.65 THz/RIU and a FOM value of 4.74/RIU for the triple PIT, which is superior to that of comparable devices.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [41] Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials
    Jia, Wei
    Ren, Pei-Wen
    Tian, Yu-Chen
    Fan, Chun-Zhen
    CHINESE PHYSICS B, 2019, 28 (02)
  • [42] Sensing Based on Plasmon-Induced Transparency in H-Shaped Graphene-Based Metamaterials
    Wu, Xiongxiong
    Chen, Jiani
    Wang, Shaolong
    Ren, Yang
    Yang, Yanning
    He, Zhihui
    NANOMATERIALS, 2024, 14 (12)
  • [43] Terahertz plasmon-induced transparency and absorption in compact graphene-based coupled nanoribbons
    Adnane Noual
    Madiha Amrani
    El Houssaine El Boudouti
    Yan Pennec
    Bahram Djafari-Rouhani
    Applied Physics A, 2019, 125
  • [44] Terahertz plasmon-induced transparency and absorption in compact graphene-based coupled nanoribbons
    Noual, Adnane
    Amrani, Madiha
    El Boudouti, El Houssaine
    Pennec, Yan
    Djafari-Rouhani, Bahram
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (03):
  • [45] A multi-functional tunable terahertz graphene metamaterial based on plasmon-induced transparency
    Yang, Youpeng
    Fan, Shuting
    Zhao, Jingjing
    Xu, Jinzhuo
    Zhu, Jianfang
    Wang, Xiaoran
    Qian, Zhengfang
    DIAMOND AND RELATED MATERIALS, 2024, 141
  • [46] Simultaneous switching at multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial
    Liu, Zhimin
    Zhang, Xiao
    Zhang, Zhenbin
    Gao, Enduo
    Zhou, Fengqi
    Li, Hongjian
    Luo, Xin
    NEW JOURNAL OF PHYSICS, 2020, 22 (08)
  • [47] Quadruple Plasmon-Induced Transparency and Dynamic Tuning Based on Bilayer Graphene Terahertz Metamaterial
    Zhang, Jiayu
    Li, Junyi
    Chen, Shuxian
    Wen, Kunhua
    Liu, Wenjie
    NANOMATERIALS, 2023, 13 (17)
  • [48] Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface
    Wang, Xianjun
    Meng, Hongyun
    Deng, Shuying
    Lao, Chaode
    Wei, Zhongchao
    Wang, Faqiang
    Tan, Chunhua
    Huang, Xuguang
    NANOMATERIALS, 2019, 9 (03):
  • [49] A polarization-insensitive dual plasmon-induced transparency terahertz sensor based on metamaterial
    Chen, Tao
    Wang, Juncheng
    Liang, Dihan
    OPTICS COMMUNICATIONS, 2023, 544
  • [50] Design and simulation of a high sensitivity terahertz metamaterial sensor based on plasmon-induced transparency
    Zhang, Huo
    Liu, Chengfeng
    Li, Zhi
    Xu, Chuanpei
    Yin, Xianhua
    Chen, Tao
    Wang, Yuee
    Gao, Lie
    OPTICAL ENGINEERING, 2024, 63 (08)