Development of an Automated Triage System for Longstanding Dizzy Patients Using Artificial Intelligence

被引:0
|
作者
Romero-Brufau, Santiago [1 ,2 ]
Macielak, Robert J. [1 ]
Staab, Jeffrey P. [1 ,3 ]
Eggers, Scott D. Z. [4 ]
Driscoll, Colin L. W. [1 ]
Shepard, Neil T. [1 ]
Totten, Douglas J. [5 ]
Albertson, Sabrina M. [6 ]
Pasupathy, Kalyan S. [7 ]
McCaslin, Devin L. [8 ]
机构
[1] Mayo Clin, Dept Otolaryngol Head & Neck Surg, 200 1st St South West, Rochester, MN 55905 USA
[2] Harvard Univ, Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[3] Mayo Clin, Dept Psychiat, Rochester, MN USA
[4] Mayo Clin, Dept Neurol, Rochester, MN USA
[5] Indiana Univ Sch Med, Dept Otolaryngol Head & Neck Surg, Indianapolis, IN USA
[6] Mayo Clin, Dept Quantitat Hlth Sci, Rochester, MN USA
[7] Univ Illinois, Dept Biomed & Hlth Informat Sci, Chicago, IL USA
[8] Univ Michigan, Dept Otolaryngol Head & Neck Surg, Ann Arbor, MI USA
关键词
dizziness; Dizziness Handicap Inventory; functional vestibular disorder; psychiatric disorder; vestibular dysfunction; PRIMARY-CARE; DIZZINESS; VERTIGO; DIAGNOSIS;
D O I
10.1002/oto2.70006
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
ObjectiveTo report the first steps of a project to automate and optimize scheduling of multidisciplinary consultations for patients with longstanding dizziness utilizing artificial intelligence.Study DesignRetrospective case review.SettingQuaternary referral center.MethodsA previsit self-report questionnaire was developed to query patients about their complaints of longstanding dizziness. We convened an expert panel of clinicians to review diagnostic outcomes for 98 patients and used a consensus approach to retrospectively determine what would have been the ideal appointments based on the patient's final diagnoses. These results were then compared retrospectively to the actual patient schedules. From these data, a machine learning algorithm was trained and validated to automate the triage process.ResultsCompared with the ideal itineraries determined retrospectively with our expert panel, visits scheduled by the triage clinicians showed a mean concordance of 70%, and our machine learning algorithm triage showed a mean concordance of 79%.ConclusionManual triage by clinicians for dizzy patients is a time-consuming and costly process. The formulated first-generation automated triage algorithm achieved similar results to clinicians when triaging dizzy patients using data obtained directly from an online previsit questionnaire.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Automated Analysis of Alignment in Long-Leg Radiographs by Using a Fully Automated Support System Based on Artificial Intelligence
    Schock, Justus
    Truhn, Daniel
    Abrar, Daniel B.
    Merhof, Dorit
    Conrad, Stefan
    Post, Manuel
    Mittelstrass, Felix
    Kuhl, Christiane
    Nebelung, Sven
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (02)
  • [42] Automated char classification using image analysis and artificial intelligence
    Alpana
    Chand, Satish
    Mohapatra, Subrajeet
    Mishra, Vivek
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2021, 28 (02) : 235 - 248
  • [43] AUTOMATED HISTOPATHOLOGIC CLASSIFICATION OF BRAIN TUMORS USING ARTIFICIAL INTELLIGENCE
    Xie, Quin
    Han, Dominick
    Faust, Kevin
    Aldape, Kenneth
    Zadeh, Gelareh
    Volynskaya, Zoya
    Djuric, Ugljesa
    Diamandis, Phedias
    NEURO-ONCOLOGY, 2017, 19 : 181 - 181
  • [44] AUTOMATED SPERM MORPSHOLOGY TESTING USING ARTIFICIAL INTELLIGENCE.
    Thirumalaraju, P.
    Bormann, C. L.
    Kanakasabapathy, M.
    Doshi, F.
    Souter, I.
    Dimitriadis, I.
    Shafiee, H.
    FERTILITY AND STERILITY, 2018, 110 (04) : E432 - E432
  • [45] Automated Registration of Multiangle SAR Images Using Artificial Intelligence
    Chopra, Pooja
    Gollamandala, Vijay Suresh
    Ahmed, Ahmed Najat
    Babu, S. B. G. Tilak
    Kaur, Chamandeep
    Achyutha Prasad, N.
    Nuagah, Stephen Jeswinde
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [46] Automated Data Harmonization (ADH) using Artificial Intelligence (AI)
    Anjan Dutta
    Tomal Deb
    Shrikant Pathak
    OPSEARCH, 2021, 58 : 257 - 275
  • [47] Development of a diagnostic support system for distal humerus fracture using artificial intelligence
    Aashay Kekatpure
    Aditya Kekatpure
    Sanjay Deshpande
    Sandeep Srivastava
    International Orthopaedics, 2024, 48 : 1303 - 1311
  • [48] Automated left ventricular dimension assessment using artificial intelligence
    Stowell, C.
    Howard, J.
    Cole, G.
    Ananthan, K.
    Demetrescu, C.
    Pearce, K.
    Rajani, R.
    Sehmi, J.
    Vimalesvaran, K.
    Kanaganayagam, S.
    Ghosh, A.
    Chambers, J.
    Rana, B.
    Francis, D.
    Shun-Shin, M.
    EUROPEAN HEART JOURNAL, 2021, 42 : 1 - 1
  • [49] Automated identification of hip arthroplasty implants using artificial intelligence
    Zibo Gong
    Yonghui Fu
    Ming He
    Xinzhe Fu
    Scientific Reports, 12
  • [50] Automated Data Harmonization (ADH) using Artificial Intelligence (AI)
    Dutta, Anjan
    Deb, Tomal
    Pathak, Shrikant
    OPSEARCH, 2021, 58 (02) : 257 - 275