Stone's theorem for distributional regression in Wasserstein distance

被引:0
|
作者
Dombry, Clement [1 ]
Modeste, Thibault [2 ]
Pic, Romain [1 ]
机构
[1] Univ Franche Comte, CNRS, LmB, UMR 6623, F-25000 Besancon, France
[2] Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, F-69622 Villeurbanne, France
关键词
Distributional regression; Wasserstein distance; nonparametric regression; minimax rate of convergence; CONVERGENCE; RATES;
D O I
10.1080/10485252.2024.2393172
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the celebrated Stone's theorem to the framework of distributional regression. More precisely, we prove that weighted empirical distributions with local probability weights satisfying the conditions of Stone's theorem provide universally consistent estimates of the conditional distributions, where the error is measured by the Wasserstein distance of order $ p\geq 1 $ p >= 1. Furthermore, for p = 1, we determine the minimax rates of convergence on specific classes of distributions. We finally provide some applications of these results, including the estimation of conditional tail expectation or probability weighted moments.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] A distributional sampling theorem
    Liu, YM
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) : 1153 - 1157
  • [32] On Properties of the Generalized Wasserstein Distance
    Piccoli, Benedetto
    Rossi, Francesco
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (03) : 1339 - 1365
  • [33] THE WASSERSTEIN DISTANCE AND APPROXIMATION THEOREMS
    RUSCHENDORF, L
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (01): : 117 - 129
  • [34] The Wasserstein Distance for Ricci Shrinkers
    Conrado, Franciele
    Zhou, Detang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10485 - 10502
  • [35] Wasserstein distance and metric trees
    Mathey-Prevot, Maxime
    Valette, Alain
    ENSEIGNEMENT MATHEMATIQUE, 2023, 69 (3-4): : 315 - 333
  • [36] Irregularity of Distribution in Wasserstein Distance
    Cole Graham
    Journal of Fourier Analysis and Applications, 2020, 26
  • [37] Wasserstein distance for OWA operators
    Harmati, Istvan a.
    Coroianu, Lucian
    Fuller, Robert
    FUZZY SETS AND SYSTEMS, 2024, 484
  • [38] Separability and completeness for the Wasserstein distance
    Bolley, F.
    SEMINAIRE DE PROBABILITES XLI, 2008, 1934 : 371 - 377
  • [39] The Ultrametric Gromov–Wasserstein Distance
    Facundo Mémoli
    Axel Munk
    Zhengchao Wan
    Christoph Weitkamp
    Discrete & Computational Geometry, 2023, 70 : 1378 - 1450
  • [40] Deep Distributional Sequence Embeddings Based on a Wasserstein Loss
    Ahmed Abdelwahab
    Niels Landwehr
    Neural Processing Letters, 2022, 54 : 3749 - 3769