Spatial-spectral feature extraction for in-field chlorophyll content estimation using hyperspectral imaging

被引:3
|
作者
Zhao, Ruomei [1 ]
Tang, Weijie [1 ]
Liu, Mingjia [1 ]
Wang, Nan [1 ]
Sun, Hong [1 ,2 ,3 ]
Li, Minzan [1 ,2 ,3 ]
Ma, Yuntao [1 ,2 ]
机构
[1] China Agr Univ, Key Lab Smart Agr Syst, Minist Educ, Beijing, Peoples R China
[2] China Agr Univ, Key Lab Agr Informat Acquisit Technol, Minist Agr & Rural Affairs, Beijing, Peoples R China
[3] China Agr Univ, Yantai Inst, Yantai, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network; Long short-term memory; Soil interference; Growth dynamic; Deep learning; Sensitive wavelength; ESTIMATING LEAF; WINTER-WHEAT; REFLECTANCE; IMAGES; REPRESENTATIONS; DENSITY;
D O I
10.1016/j.biosystemseng.2024.08.008
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In-situ leaf chlorophyll content (LCC) estimation based on hyperspectral imaging (HSI) is crucial to track the growth status of crops for field management. However, spatial and spectral features of HSI data, suffering from interference of growth dynamic effect and soil, pose the challenge on accuracy and robustness of LCC estimation in several years and growth stages. Therefore, a joint spectral-spatial feature extraction method was proposed by cascade of three-dimensional convolutional neural network (3DCNN) and long short-term memory (LSTM) to reduce the interference for optimising the LCC estimation. Firstly, crop pixels were separated from soil with vegetation index segmentation method. Secondly, when raw images and segmented pixels were input, sensitive bands were selected by random frog (RF bands), and 3DCNN-LSTM was used to extract the joint spectral-spatial features. Finally, models established by RF bands, 3DCNN and 3DCNN-LSTM were compared, and robustness in individual years and stages was validated. Results showed that RF bands and 3DCNN obtained R P 2 of 0.76 and 0.84 when not segmented. After segmentation, performance of 3DCNN improved (RP2 P 2 = 0.85) compared to RF bands (RP2 P 2 = 0.80). Spectral-spatial features by 3DCNN reduced the interference of soil. 3DCNN-LSTM without and with segmentation obtained good performance with R P 2 of 0.95 and 0.96, and the proposed method could reduce the image segmentation process. The optimal model achieved R P 2 above 0.93 in individual years (RP2 P 2 = 0.96 in 2021, R P 2 = 0.94 in 2021) and R P 2 in the range of 0.87-0.97 at individual stages. This paper provides a method to track growth variability between soil and crop for the LCC estimation optimisation.
引用
收藏
页码:263 / 276
页数:14
相关论文
共 50 条
  • [21] A SUBPIXEL SPATIAL-SPECTRAL FEATURE MINING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xu, Xiang
    Li, Jun
    Zhang, Yanning
    Li, Shutao
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8476 - 8479
  • [22] Compressed spatial-spectral feature representation for hyperspectral ground classification
    Zhou Shichao
    Zhao Baojun
    Tang Linbo
    Wang Wenzheng
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7928 - 7931
  • [23] Spatial-Spectral Feature Extraction via Deep ConvLSTM Neural Networks for Hyperspectral Image Classification
    Hu, Wen-Shuai
    Li, Heng-Chao
    Pan, Lei
    Li, Wei
    Tao, Ran
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (06): : 4237 - 4250
  • [24] Estimation of sub-endmembers using spatial-spectral approach for hyperspectral images
    Chetia, Gouri Shankar
    Devi, Bishnulatpam Pushpa
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (01)
  • [25] A Fast Spatial-Spectral Preprocessing Module for Hyperspectral Endmember Extraction
    Kowkabi, Fatemeh
    Ghassemian, Hassan
    Keshavarz, Ahmad
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (06) : 782 - 786
  • [26] Spatial-spectral combined preprocessing method for hyperspectral endmember extraction
    Wu Yin-hua
    Wang Peng-chong
    Wu Shen-jiang
    Zhang Fa-qiang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2020, 35 (09) : 955 - 964
  • [27] Spatial spectral feature extraction in hyperspectral imagery
    Winings, MJ
    Fraser, JC
    ALGORITHMS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY V, 1999, 3717 : 82 - 91
  • [28] Hierarchical Spatial-Spectral Feature Extraction with Long Short Term Memory (LSTM) for Mineral Identification Using Hyperspectral Imagery
    Zhao, Huijie
    Deng, Kewang
    Li, Na
    Wang, Ziwei
    Wei, Wei
    SENSORS, 2020, 20 (23) : 1 - 15
  • [29] A Global Spatial-Spectral Feature Fused Autoencoder for Nonlinear Hyperspectral Unmixing
    Zhang, Mingle
    Yang, Mingyu
    Xie, Hongyu
    Yue, Pinliang
    Zhang, Wei
    Jiao, Qingbin
    Xu, Liang
    Tan, Xin
    REMOTE SENSING, 2024, 16 (17)
  • [30] Novel Deep-Learning-Based Spatial-Spectral Feature Extraction For Hyperspectral Remote Sensing Applications
    Praveen, Bishwas
    Menon, Vineetha
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 5444 - 5452