Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning

被引:1
|
作者
De Ryck, Tim [1 ]
Mishra, Siddhartha [2 ]
机构
[1] Swiss Fed Inst Technol, Seminar Appl Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Seminar Appl Math & ETH AI Ctr, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
65M15; 68T07; 35A35; UNIVERSAL APPROXIMATION; NONLINEAR OPERATORS; CONVERGENCE; FRAMEWORK; BOUNDS;
D O I
10.1017/S0962492923000089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Physics-informed neural networks (PINNs) and their variants have been very popular in recent years as algorithms for the numerical simulation of both forward and inverse problems for partial differential equations. This article aims to provide a comprehensive review of currently available results on the numerical analysis of PINNs and related models that constitute the backbone of physics-informed machine learning. We provide a unified framework in which analysis of the various components of the error incurred by PINNs in approximating PDEs can be effectively carried out. We present a detailed review of available results on approximation, generalization and training errors and their behaviour with respect to the type of the PDE and the dimension of the underlying domain. In particular, we elucidate the role of the regularity of the solutions and their stability to perturbations in the error analysis. Numerical results are also presented to illustrate the theory. We identify training errors as a key bottleneck which can adversely affect the overall performance of various models in physics-informed machine learning.
引用
收藏
页码:633 / 713
页数:81
相关论文
共 50 条
  • [21] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [22] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [23] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [24] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425
  • [25] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [26] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [27] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [28] A Taxonomic Survey of Physics-Informed Machine Learning
    Pateras, Joseph
    Rana, Pratip
    Ghosh, Preetam
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [29] Physics-informed neural networks as surrogate models of hydrodynamic simulators
    Donnelly, James
    Daneshkhah, Alireza
    Abolfathi, Soroush
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 912
  • [30] Physics-informed neural networks for learning fluid flows with symmetry
    Kim, Younghyeon
    Kwak, Hyungyeol
    Nam, Jaewook
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (09) : 2119 - 2127