A novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health

被引:3
|
作者
Zhao, Shang-Yu [1 ]
Ou, Kai [1 ]
Gu, Xing-Xing [2 ]
Dan, Zhi-Min [3 ]
Zhang, Jiu-Jun [4 ]
Wang, Ya-Xiong [1 ]
机构
[1] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
[2] Chongqing Technol & Business Univ, Coll Environm & Resources, Chongqing Key Lab Catalysis & New Environm Mat, Chongqing 400067, Peoples R China
[3] Contemporary Amperex Technol Co Ltd CATL, Ningde 352100, Peoples R China
[4] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
State-of-charge (SOC); State-of-health (SOH); Global correction; Temperature; Aging migration; Transformer; Multiscale attention; CO-ESTIMATION;
D O I
10.1007/s12598-024-02942-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The state-of-charge (SOC) and state-of-health (SOH) of lithium-ion batteries affect their operating performance and safety. The coupled SOC and SOH are difficult to estimate adaptively in multi-temperatures and aging. This paper proposes a novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health. The battery model is formulated across temperatures and aging, which provides accurate feedback for unscented Kalman filter-based SOC estimation and aging information. The open-circuit voltages (OCVs) are corrected globally by the temporal convolutional network with accurate OCVs in time-sliding windows. Arrhenius equation is combined with estimated SOH for temperature-aging migration. A novel transformer model is introduced, which integrates multiscale attention with the transformer's encoder to incorporate SOC-voltage differential derived from battery model. This model simultaneously extracts local aging information from various sequences and aging channels using a self-attention and depth-separate convolution. By leveraging multi-head attention, the model establishes information dependency relationships across different aging levels, enabling rapid and precise SOH estimation. Specifically, the root mean square error for SOC and SOH under conditions of 15 degrees C dynamic stress test and 25 degrees C constant current cycling was less than 0.9% and 0.8%, respectively. Notably, the proposed method exhibits excellent adaptability to varying temperature and aging conditions, accurately estimating SOC and SOH.
引用
收藏
页码:5637 / 5651
页数:15
相关论文
共 50 条
  • [31] A review of state-of-health estimation for lithium-ion battery packs
    Li, Qingwei
    Song, Renjie
    Wei, Yongqiang
    JOURNAL OF ENERGY STORAGE, 2025, 118
  • [32] Novel Lithium-Ion Battery State-of-Health Estimation Method Using a Genetic Programming Model
    Yao, Hang
    Jia, Xiang
    Zhao, Qian
    Cheng, Zhi-Jun
    Guo, Bo
    IEEE ACCESS, 2020, 8 : 95333 - 95344
  • [33] Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
    Xu, J.
    Jia, Y.
    Liu, B.
    Zhao, H.
    Yu, H.
    Li, J.
    Yin, S.
    EXPERIMENTAL MECHANICS, 2018, 58 (04) : 633 - 643
  • [34] Model-Based State-of-Charge and State-of-Health Estimation Algorithms Utilizing a New Free Lithium-Ion Battery Cell Dataset for Benchmarking Purposes
    Neupert, Steven
    Kowal, Julia
    BATTERIES-BASEL, 2023, 9 (07):
  • [35] Higher Order Sliding-Mode Observers for State-of-Charge and State-of-Health Estimation of Lithium-Ion Batteries
    Obeid, Hussein
    Petrone, Raffaele
    Chaoui, Hicham
    Gualous, Hamid
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (04) : 4482 - 4492
  • [36] Joint estimation of battery state-of-charge and state-of-health based on a simplified pseudo-two-dimensional model
    Liu, Boyang
    Tang, Xiaopeng
    Gao, Furong
    ELECTROCHIMICA ACTA, 2020, 344
  • [37] Joint Estimation of State of Charge and State of Health of Lithium Ion Battery
    Chen, Peng
    Jin, Xin
    Han, Xue Feng
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (01)
  • [38] A Novel State-of-Charge Estimation Method for Lithium-Ion Battery Pack of Electric Vehicles
    Chen, Zheng
    Xia, Bing
    Mi, Chunting Chris
    2015 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2015,
  • [39] Lithium-ion battery state-of-charge estimation strategy for industrial applications
    Chen, Zilong
    Liao, Wenjun
    Li, Pingfei
    Tan, Jinhui
    Chen, Yuping
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENERGY, 2024, 177 (01) : 14 - 21
  • [40] State-of-Charge Estimation for Lithium-ion Battery Using AUKF and LSSVM
    Meng, Jinhao
    Luo, Guangzhao
    Gao, Fei
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,