A novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health

被引:0
|
作者
Zhao, Shang-Yu [1 ]
Ou, Kai [1 ]
Gu, Xing-Xing [2 ]
Dan, Zhi-Min [3 ]
Zhang, Jiu-Jun [4 ]
Wang, Ya-Xiong [1 ]
机构
[1] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
[2] Chongqing Technol & Business Univ, Coll Environm & Resources, Chongqing Key Lab Catalysis & New Environm Mat, Chongqing 400067, Peoples R China
[3] Contemporary Amperex Technol Co Ltd CATL, Ningde 352100, Peoples R China
[4] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
State-of-charge (SOC); State-of-health (SOH); Global correction; Temperature; Aging migration; Transformer; Multiscale attention; CO-ESTIMATION;
D O I
10.1007/s12598-024-02942-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The state-of-charge (SOC) and state-of-health (SOH) of lithium-ion batteries affect their operating performance and safety. The coupled SOC and SOH are difficult to estimate adaptively in multi-temperatures and aging. This paper proposes a novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health. The battery model is formulated across temperatures and aging, which provides accurate feedback for unscented Kalman filter-based SOC estimation and aging information. The open-circuit voltages (OCVs) are corrected globally by the temporal convolutional network with accurate OCVs in time-sliding windows. Arrhenius equation is combined with estimated SOH for temperature-aging migration. A novel transformer model is introduced, which integrates multiscale attention with the transformer's encoder to incorporate SOC-voltage differential derived from battery model. This model simultaneously extracts local aging information from various sequences and aging channels using a self-attention and depth-separate convolution. By leveraging multi-head attention, the model establishes information dependency relationships across different aging levels, enabling rapid and precise SOH estimation. Specifically, the root mean square error for SOC and SOH under conditions of 15 degrees C dynamic stress test and 25 degrees C constant current cycling was less than 0.9% and 0.8%, respectively. Notably, the proposed method exhibits excellent adaptability to varying temperature and aging conditions, accurately estimating SOC and SOH.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] State-of-charge estimation and uncertainty for lithium-ion battery strings
    Truchot, Cyril
    Dubarry, Matthieu
    Liaw, Bor Yann
    [J]. APPLIED ENERGY, 2014, 119 : 218 - 227
  • [22] Co-Estimation of State-of-Charge and State-of-Health for Lithium-Ion Batteries Considering Temperature and Ageing
    Lai, Xin
    Yuan, Ming
    Tang, Xiaopeng
    Yao, Yi
    Weng, Jiahui
    Gao, Furong
    Ma, Weiguo
    Zheng, Yuejiu
    [J]. ENERGIES, 2022, 15 (19)
  • [23] A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring
    Weng, Caihao
    Sun, Jing
    Peng, Huei
    [J]. JOURNAL OF POWER SOURCES, 2014, 258 : 228 - 237
  • [24] Joint State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries Based on Improved Lebesgue Sampling and Division of Aging Stage
    Mao, Ling
    Yang, Chuan
    Zhao, Jinbin
    Qu, Keqing
    Yu, Xiaofang
    [J]. ENERGY TECHNOLOGY, 2023, 11 (10)
  • [25] A novel fractional order model based state-of-charge estimation method for lithium-ion battery
    Mu, Hao
    Xiong, Rui
    Zheng, Hongfei
    Chang, Yuhua
    Chen, Zeyu
    [J]. APPLIED ENERGY, 2017, 207 : 384 - 393
  • [26] State-of-Charge Estimation of Lithium-ion Battery Based on a Novel Reduced Order Electrochemical Model
    Yuan Chaochun, b
    Wang Bingjian
    Zhang Houzhong
    Long Chen
    Li Huanhuan
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (01): : 1131 - 1146
  • [27] Development of a Matlab/Simulink Model for Monitoring Cell State-of-Health and State-of-Charge via Impedance of Lithium-Ion Battery Cells
    Kim, Jonghyeon
    Kowal, Julia
    [J]. BATTERIES-BASEL, 2022, 8 (02):
  • [28] Joint estimation of state of charge and state of health of lithium-ion battery based on fractional order model
    Yuanzhong Xu
    Bohan Hu
    Tiezhou Wu
    Tingyi Xiao
    [J]. Journal of Power Electronics, 2022, 22 : 318 - 330
  • [29] Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
    J. Xu
    Y. Jia
    B. Liu
    H. Zhao
    H. Yu
    J. Li
    S. Yin
    [J]. Experimental Mechanics, 2018, 58 : 633 - 643
  • [30] Joint estimation of state of charge and state of health of lithium-ion battery based on fractional order model
    Xu, Yuanzhong
    Hu, Bohan
    Wu, Tiezhou
    Xiao, Tingyi
    [J]. JOURNAL OF POWER ELECTRONICS, 2022, 22 (02) : 318 - 330