Fabrication and property research of a new 3D-Printable magnetorheological elastomer (MRE)

被引:2
|
作者
Peng, Zezhou [1 ]
Zhai, Zirong [1 ]
Yang, Rui [1 ]
Xu, Huiyu [1 ]
Wu, Yingna [1 ]
机构
[1] ShanghaiTech Univ, Ctr Adapt Syst Engn, Sch Creat & Art, Shanghai 201210, Peoples R China
关键词
Fillers;
D O I
10.1016/j.mtphys.2024.101467
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to meet the growing design demands for shape and structure of magnetic functional materials, particularly Magnetorheological Elastomers (MREs), additive manufacturing technology has been introduced into MRE production. Reported works of printable MRE ( p-MRE) have successfully obtained high relative magnetorheological (MR) performance comparable to traditional MRE. However, there are still few studies on p-MRE with both high relative and absolute MR effects that is required for some applications such as intelligent dampers in automotive industry. In this study, polyurethane (TPU) and carbonyl iron powder (CIP) were utilized as raw materials to formulate p-MRE with high printability and high comprehensive MR performance. Based on the fused deposition modeling (FDM) process, a printing strategy suitable for this p-MRE material was determined through experimental design (DOE). The test result showed that the comprehensive MR performance of the p-MRE sheet samples obtained through linear printing path exceeded the majority of previously reported p-MRE materials. In addition, based on the analysis of the correlation between magnetic hysteresis like effect and MR effects, a circular printing path that may be beneficial for improving MR performance was proposed and corresponding p-MRE sheet sample was printed. The test results showed that compared with the linear printing path, the circular printing path further increases the comprehensive MR effect of the sheet sample to a maximum absolute MR effect of 4.2 MPa and a maximum relative MR effect of 620 %, which is comparable to most conventional MRE materials. Additionally, a theoretical framework associating magnetic field strength and filling density was proposed to explain peculiar phenomena observed in the experiments. On the basis of previous research on MREs and filler modified elastomers, a hypothesis was proposed to link magnetic field intensity with filler density, allowing the existing theory of filler modified elastomers to be used to explain the special phenomena observed in our experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] 3D-printable high efficiency upconverting polymer blends
    Park, Jeongmin
    Kim, Jae-Hyuk
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [32] Microencapsulated phase change material in 3D-printable mortars
    Rahemipoor, Sahand
    Bayat, Mohamad
    Hasany, Masoud
    Mehrali, Mohammad
    Almdal, Kristoffer
    Ranjbar, Navid
    Mehrali, Mehdi
    ENERGY CONVERSION AND MANAGEMENT, 2024, 321
  • [33] 3D-Printable Cellular Composites for the Production of Recombinant Proteins
    Sim, Seunghyun
    Hui, Yue
    Tirrell, David A.
    BIOMACROMOLECULES, 2022, 23 (11) : 4687 - 4695
  • [34] Tunable scaffolds from novel, 3D-printable biomaterials
    Guvendiren, Murat
    Dube, Koustubh
    Molde, Joseph
    Kohn, Joachim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [35] Toward an open-source 3D-printable laboratory
    McNair, Mason C.
    Cocioba, Sebastian C.
    Pietrzyk, Peter
    Rife, Trevor W.
    APPLICATIONS IN PLANT SCIENCES, 2024, 12 (01):
  • [36] 3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels
    Leppiniemi, Jenni
    Lahtinen, Panu
    Paajanen, Antti
    Mahlberg, Riitta
    Metsa-Kortelainen, Sini
    Pinornaa, Tatu
    Pajari, Heikki
    Vikholm-Lundin, Inger
    Pursula, Pekka
    Hytonen, Vesa P.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) : 21959 - 21970
  • [37] 3D-Printable Sustainable Bioplastics from Gluten and Keratin
    Alshehhi, Jumana Rashid Mohammed Haroub
    Wanasingha, Nisal
    Balu, Rajkamal
    Mata, Jitendra
    Shah, Kalpit
    Dutta, Naba K.
    Choudhury, Namita Roy
    GELS, 2024, 10 (02)
  • [38] Open-Source 3D-Printable Optics Equipment
    Zhang, Chenlong
    Anzalone, Nicholas C.
    Faria, Rodrigo P.
    Pearce, Joshua M.
    PLOS ONE, 2013, 8 (03):
  • [39] Progress on a Novel, 3D-Printable Heart Valve Prosthesis
    Schroeter, Filip
    Kuehnel, Ralf-Uwe
    Hartrumpf, Martin
    Ostovar, Roya
    Albes, Johannes Maximilian
    POLYMERS, 2023, 15 (22)
  • [40] 3D-Printable Concrete for Energy-Efficient Buildings
    Samudrala, Manideep
    Mujeeb, Syed
    Lanjewar, Bhagyashri A. A.
    Chippagiri, Ravijanya
    Kamath, Muralidhar
    Ralegaonkar, Rahul V. V.
    ENERGIES, 2023, 16 (10)