Early Prediction of Gestational Diabetes Mellitus Using Electronic Health Records and Machine Learning

被引:1
|
作者
Germaine, Mark A.
O'Higgins, Amy C.
Healy, Graham
Egan, Brendan
机构
基金
爱尔兰科学基金会;
关键词
D O I
10.2337/db24-1968-LB
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
1968-LB
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Prediction of Venous Thromboembolism in Diverse Populations Using Machine Learning and Structured Electronic Health Records
    Chen, Robert
    Petrazzini, Ben Omega
    Malick, Waqas A.
    Rosenson, Robert S.
    Do, Ron
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2024, 44 (02) : 491 - 504
  • [32] Prediction of Endometrial Carcinoma Using the Combination of Electronic Health Records and an Ensemble Machine Learning Method
    Wang, Wenwen
    Xu, Yang
    Yuan, Suzhen
    Li, Zhiying
    Zhu, Xin
    Zhou, Qin
    Shen, Wenfeng
    Wang, Shixuan
    FRONTIERS IN MEDICINE, 2022, 9
  • [33] Dynamic Delirium Prediction in the Intensive Care Unit using Machine Learning on Electronic Health Records
    Contreras, Miguel
    Silva, Brandon
    Shickel, Benjamin
    Bandyopadhyay, Sabyasachi
    Guan, Ziyuan
    Ren, Yuanfang
    Ozrazgat-Baslanti, Tezcan
    Khezeli, Kia
    Bihorac, Azra
    Rashidi, Parisa
    2023 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, BHI, 2023,
  • [34] Prediction and diagnosis of depression using machine learning with electronic health records data: a systematic review
    David Nickson
    Caroline Meyer
    Lukasz Walasek
    Carla Toro
    BMC Medical Informatics and Decision Making, 23
  • [35] Subphenotyping depression using machine learning and electronic health records
    Xu, Zhenxing
    Wang, Fei
    Adekkanattu, Prakash
    Bose, Budhaditya
    Vekaria, Veer
    Brandt, Pascal
    Jiang, Guoqian
    Kiefer, Richard C.
    Luo, Yuan
    Pacheco, Jennifer A.
    Rasmussen, Luke V.
    Xu, Jie
    Alexopoulos, George
    Pathak, Jyotishman
    LEARNING HEALTH SYSTEMS, 2020, 4 (04):
  • [36] Prediction of Gestational Diabetes by Machine Learning Algorithms
    Gnanadass I.
    IEEE Potentials, 2020, 39 (06): : 32 - 37
  • [37] Prediction of Diabetes Mellitus Progression Using Supervised Machine Learning
    Chauhan, Apoorva S.
    Varre, Mathew S.
    Izuora, Kenneth
    Trabia, Mohamed B.
    Dufek, Janet S.
    SENSORS, 2023, 23 (10)
  • [38] Application of machine learning algorithm incorporating dietary intake in prediction of gestational diabetes mellitus
    Ding, Tianze
    Liu, Peijie
    Jia, Jie
    Wu, Hui
    Zhu, Jie
    Yang, Kefeng
    ENDOCRINE CONNECTIONS, 2024, 13 (12)
  • [39] Readmission prediction using deep learning on electronic health records
    Ashfaq, Awais
    Sant'Anna, Anita
    Lingman, Markus
    Nowaczyk, Slawomir
    JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 97
  • [40] Machine Learning-Based Prediction of Large-for-Gestational-Age Infants in Mothers With Gestational Diabetes Mellitus
    Kang, Mei
    Zhu, Chengguang
    Lai, Mengyu
    Weng, Jianrong
    Zhuang, Yan
    He, Huichen
    Qiu, Yan
    Wu, Yixia
    Qi, Zhangxuan
    Zhang, Weixia
    Xu, Xianming
    Zhu, Yanhong
    Wang, Yufan
    Yang, Xiaokang
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2024,