Quantum-metric-induced quantum Hall conductance inversion and reentrant transition in fractional Chern insulators

被引:2
|
作者
Wu, Ang-Kun [1 ]
Sarkar, Siddhartha [2 ]
Wan, Xiaohan [2 ]
Sun, Kai [1 ,2 ]
Lin, Shi-Zeng [3 ,4 ]
机构
[1] Los Alamos Natl Lab LANL, Theoret Div T-4, Los Alamos, NM 87545 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[3] Alamos Natl Lab LANL, CNLS, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab LANL, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
STATISTICS;
D O I
10.1103/PhysRevResearch.6.L032063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum metric of single-particle wave functions in topological flat bands plays a crucial role in determining the stability of fractional Chern insulating (FCI) states. Here, we unravel that the quantum metric causes the many-body Chern number of the FCI states to deviate sharply from the expected value associated with partial filling of the single-particle topological flat band. Furthermore, the variation of the quantum metric in momentum space induces band dispersion through interactions, affecting the stability of the FCI states. This causes a reentrant transition into the Fermi liquid from the FCI phase as the interaction strength increases.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Two-terminal conductance of a fractional quantum Hall edge
    V. V. Ponomarenko
    D. V. Averin
    Journal of Experimental and Theoretical Physics Letters, 2001, 74 : 87 - 90
  • [42] Emergent QCD3 quantum phase transitions of fractional Chern insulators
    Ma, Ruochen
    He, Yin-Chen
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [43] Imaging the Conductance of Integer and Fractional Quantum Hall Edge States
    Pascher, Nikola
    Roessler, Clemens
    Ihn, Thomas
    Ensslin, Klaus
    Reichl, Christian
    Wegscheider, Werner
    PHYSICAL REVIEW X, 2014, 4 (01):
  • [44] Quantum Geometry and Stabilization of Fractional Chern Insulators far from the Ideal Limit
    Shavit, Gal
    Oreg, Yuval
    PHYSICAL REVIEW LETTERS, 2024, 133 (15)
  • [45] The effect of the warping term on the fractional quantum Hall states in topological insulators
    Fu, Zhen-Guo
    Zheng, Fawei
    Wang, Zhigang
    Zhang, Ping
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2013, 2013 (10):
  • [46] HALL RESISTANCE OF THE REENTRANT INSULATING PHASE AROUND THE 1/5 FRACTIONAL QUANTUM HALL LIQUID
    SAJOTO, T
    LI, YP
    ENGEL, LW
    TSUI, DC
    SHAYEGAN, M
    PHYSICAL REVIEW LETTERS, 1993, 70 (15) : 2321 - 2324
  • [47] Isotropic to anisotropic transition in a fractional quantum Hall state
    Mulligan, Michael
    Nayak, Chetan
    Kachru, Shamit
    PHYSICAL REVIEW B, 2010, 82 (08):
  • [48] Determination of topological edge quantum numbers of fractional quantum Hall phases by thermal conductance measurements
    Srivastav, Saurabh Kumar
    Kumar, Ravi
    Spanslatt, Christian
    Watanabe, K.
    Taniguchi, T.
    Mirlin, Alexander D.
    Gefen, Yuval
    Das, Anindya
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [49] Sum rule of Hall conductance in a random quantum phase transition
    Hatsugai, Y
    Ishibashi, K
    Morita, Y
    PHYSICAL REVIEW LETTERS, 1999, 83 (11) : 2246 - 2249
  • [50] Determination of topological edge quantum numbers of fractional quantum Hall phases by thermal conductance measurements
    Saurabh Kumar Srivastav
    Ravi Kumar
    Christian Spånslätt
    K. Watanabe
    T. Taniguchi
    Alexander D. Mirlin
    Yuval Gefen
    Anindya Das
    Nature Communications, 13