Quantum-metric-induced quantum Hall conductance inversion and reentrant transition in fractional Chern insulators

被引:2
|
作者
Wu, Ang-Kun [1 ]
Sarkar, Siddhartha [2 ]
Wan, Xiaohan [2 ]
Sun, Kai [1 ,2 ]
Lin, Shi-Zeng [3 ,4 ]
机构
[1] Los Alamos Natl Lab LANL, Theoret Div T-4, Los Alamos, NM 87545 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[3] Alamos Natl Lab LANL, CNLS, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab LANL, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
STATISTICS;
D O I
10.1103/PhysRevResearch.6.L032063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum metric of single-particle wave functions in topological flat bands plays a crucial role in determining the stability of fractional Chern insulating (FCI) states. Here, we unravel that the quantum metric causes the many-body Chern number of the FCI states to deviate sharply from the expected value associated with partial filling of the single-particle topological flat band. Furthermore, the variation of the quantum metric in momentum space induces band dispersion through interactions, affecting the stability of the FCI states. This causes a reentrant transition into the Fermi liquid from the FCI phase as the interaction strength increases.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Topological insulators and fractional quantum Hall effect on the ruby lattice
    Hu, Xiang
    Kargarian, Mehdi
    Fiete, Gregory A.
    PHYSICAL REVIEW B, 2011, 84 (15):
  • [32] Effect of external fields in high Chern number quantum anomalous Hall insulators
    Baba, Yuriko
    Amado, Mario
    Diez, Enrique
    Dominguez-Adame, Francisco
    Molina, Rafael A.
    PHYSICAL REVIEW B, 2022, 106 (24)
  • [33] From fractional Chern insulators to Abelian and non-Abelian fractional quantum Hall states: Adiabatic continuity and orbital entanglement spectrum
    Liu, Zhao
    Bergholtz, Emil J.
    PHYSICAL REVIEW B, 2013, 87 (03)
  • [34] Conductance fluctuations at the integer quantum Hall plateau transition
    Cho, S
    Fisher, MPA
    PHYSICAL REVIEW B, 1997, 55 (03): : 1637 - 1641
  • [36] Measurement of the conductance distribution function at a quantum Hall transition
    Cobden, DH
    Kogan, E
    PHYSICAL REVIEW B, 1996, 54 (24) : 17316 - 17319
  • [37] Drag conductance induced by neutral-mode localization in fractional quantum Hall junctions
    Park, Jinhong
    Goldstein, Moshe
    Gefen, Yuval
    Mirlin, Alexander D.
    Vaeyrynen, Jukka I.
    PHYSICAL REVIEW B, 2024, 110 (15)
  • [38] Fractional Quantum Conductance Plateaus in Mosaic-Like Conductors and Their Similarities to the Fractional Quantum Hall Effect
    Kisslinger, Ferdinand
    Rienmueller, Dennis
    Ott, Christian
    Kampert, Erik
    Weber, Heiko B.
    ANNALEN DER PHYSIK, 2019, 531 (07)
  • [39] Noncommutative Chern-Simons Description of the Fractional Quantum Hall Edge
    Huang Wei
    Wang Zhao-Long
    Yan Mu-Lin
    CHINESE PHYSICS LETTERS, 2010, 27 (06)
  • [40] Two-terminal conductance of a fractional quantum Hall edge
    Ponomarenko, VV
    Averin, DV
    JETP LETTERS, 2001, 74 (02) : 87 - 90