Sticky Brownian motions on star graphs

被引:1
|
作者
Bonaccorsi, Stefano [1 ]
D'Ovidio, Mirko [2 ]
机构
[1] Univ Trento, Dept Math, Via Sommar 14, I-38123 Trento, Italy
[2] Sapienza Univ Rome, Dept Basic & Appl Sci Engn, Via Antonio Scarpa 14, I-00161 Rome, Italy
关键词
Brownian motion on graphs (primary); Dynamic boundary conditions; Non-local operators; Fractional differential equations; DIFFUSION-PROCESSES; EQUATIONS;
D O I
10.1007/s13540-024-00336-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the construction of Brownian motions and related stochastic processes in a star graph, which is a non-Euclidean structure where some features of the classical modeling fail. We propose a probabilistic construction of the Sticky Brownian motion by slowing down the Brownian motion when in the vertex of the star graph. Later, we apply a random change of time to the previous construction, which leads to a trapping phenomenon in the vertex of the star graph, with characterization of the trap in terms of a singular measure Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}. The process associated to this time change is described here and, moreover, we show that it defines a probabilistic representation of the solution to a heat equation type problem on the star graph with non-local dynamic conditions in the vertex that can be written in terms of a Caputo-D & zcaron;rba & scaron;jan fractional derivative defined by the singular measure Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}. Extensions to general graph structures can be given by applying to our results a localisation technique.
引用
收藏
页码:2859 / 2891
页数:33
相关论文
共 50 条
  • [41] Stochastic differential equations for sticky Brownian motion
    Engelbert, Hans-Juergen
    Peskir, Goran
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2014, 86 (06) : 993 - 1021
  • [42] Bouncing Skew Brownian Motions
    Gloter, Arnaud
    Martinez, Miguel
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) : 319 - 363
  • [43] Coalescence of skew Brownian motions
    Barlow, M
    Burdzy, K
    Kaspi, H
    Mandelbaum, A
    SEMINAIRE DE PROBABILITES XXXV, 2001, 1755 : 202 - 205
  • [44] Condensation of SIP Particles and Sticky Brownian Motion
    Ayala, Mario
    Carinci, Gioia
    Redig, Frank
    JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (03)
  • [45] KPZ equation limit of sticky Brownian motion
    Das, Sayan
    Drillick, Hindy
    Parekh, Shalin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (10)
  • [46] Fluctuations of Brownian motions on GLN
    Cebron, Guillaume
    Kemp, Todd
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (01): : 524 - 547
  • [47] BROWNIAN MOTIONS ON THE HOMEOMORPHISMS OF THE PLANE
    HARRIS, TE
    ANNALS OF PROBABILITY, 1981, 9 (02): : 232 - 254
  • [48] SPHERES, CUBES, AND BROWNIAN MOTIONS
    ADLER, RJ
    ADVANCES IN APPLIED PROBABILITY, 1979, 11 (02) : 289 - 289
  • [49] ON BOUNCING GEOMETRIC BROWNIAN MOTIONS
    Liu, Xin
    Kulkarni, Vidyadhar G.
    Gong, Qi
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2019, 33 (04) : 591 - 617
  • [50] Quantum mechanics and Brownian motions
    Namiki, M
    ACTA APPLICANDAE MATHEMATICAE, 2000, 63 (1-3) : 275 - 282