Sticky Brownian motions on star graphs

被引:1
|
作者
Bonaccorsi, Stefano [1 ]
D'Ovidio, Mirko [2 ]
机构
[1] Univ Trento, Dept Math, Via Sommar 14, I-38123 Trento, Italy
[2] Sapienza Univ Rome, Dept Basic & Appl Sci Engn, Via Antonio Scarpa 14, I-00161 Rome, Italy
关键词
Brownian motion on graphs (primary); Dynamic boundary conditions; Non-local operators; Fractional differential equations; DIFFUSION-PROCESSES; EQUATIONS;
D O I
10.1007/s13540-024-00336-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the construction of Brownian motions and related stochastic processes in a star graph, which is a non-Euclidean structure where some features of the classical modeling fail. We propose a probabilistic construction of the Sticky Brownian motion by slowing down the Brownian motion when in the vertex of the star graph. Later, we apply a random change of time to the previous construction, which leads to a trapping phenomenon in the vertex of the star graph, with characterization of the trap in terms of a singular measure Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}. The process associated to this time change is described here and, moreover, we show that it defines a probabilistic representation of the solution to a heat equation type problem on the star graph with non-local dynamic conditions in the vertex that can be written in terms of a Caputo-D & zcaron;rba & scaron;jan fractional derivative defined by the singular measure Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}. Extensions to general graph structures can be given by applying to our results a localisation technique.
引用
收藏
页码:2859 / 2891
页数:33
相关论文
共 50 条
  • [21] Perturbed Brownian motions
    Perman, M
    Werner, W
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (03) : 357 - 383
  • [22] Maximal Brownian motions
    Brossard, Jean
    Emery, Michel
    Leuridan, Christophe
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 876 - 886
  • [23] ON ISOTROPIC BROWNIAN MOTIONS
    LEJAN, Y
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (04): : 609 - 620
  • [24] FRACTIONAL BROWNIAN MOTIONS
    Fulinski, Andrzej
    ACTA PHYSICA POLONICA B, 2020, 51 (05): : 1097 - 1129
  • [25] Perturbed Brownian motions
    Mihael Perman
    Wendelin Werner
    Probability Theory and Related Fields, 1997, 108 : 357 - 383
  • [26] Multifractality and Laplace spectrum of horizontal visibility graphs constructed from fractional Brownian motions
    Yu, Zu-Guo
    Zhang, Huan
    Huang, Da-Wen
    Lin, Yong
    Vo Anh
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [27] CONFLUENT BROWNIAN MOTIONS
    GEMAN, D
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (02) : 306 - 306
  • [28] ON WALSH BROWNIAN MOTIONS
    BARLOW, M
    PITMAN, J
    YOR, M
    LECTURE NOTES IN MATHEMATICS, 1989, 1372 : 275 - 293
  • [29] Exotic Brownian motions
    Osada, Hirofumi
    KYUSHU JOURNAL OF MATHEMATICS, 2007, 61 (01) : 233 - 257
  • [30] On some properties of sticky Brownian motion
    Zhang, Haoyan
    Jiang, Pingping
    STOCHASTICS AND DYNAMICS, 2021, 21 (06)