This paper is concerned with the construction of Brownian motions and related stochastic processes in a star graph, which is a non-Euclidean structure where some features of the classical modeling fail. We propose a probabilistic construction of the Sticky Brownian motion by slowing down the Brownian motion when in the vertex of the star graph. Later, we apply a random change of time to the previous construction, which leads to a trapping phenomenon in the vertex of the star graph, with characterization of the trap in terms of a singular measure Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}. The process associated to this time change is described here and, moreover, we show that it defines a probabilistic representation of the solution to a heat equation type problem on the star graph with non-local dynamic conditions in the vertex that can be written in terms of a Caputo-D & zcaron;rba & scaron;jan fractional derivative defined by the singular measure Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}. Extensions to general graph structures can be given by applying to our results a localisation technique.
机构:
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USAUniv Paris, Sorbonne Univ, Univ PSL, Lab Phys,Ecole Normale Super,ENS,CNRS, Paris, France
Rychnovsky, Mark
ELECTRONIC JOURNAL OF PROBABILITY,
2020,
25
: 1
-
52