Sticky Brownian motions on star graphs

被引:1
|
作者
Bonaccorsi, Stefano [1 ]
D'Ovidio, Mirko [2 ]
机构
[1] Univ Trento, Dept Math, Via Sommar 14, I-38123 Trento, Italy
[2] Sapienza Univ Rome, Dept Basic & Appl Sci Engn, Via Antonio Scarpa 14, I-00161 Rome, Italy
关键词
Brownian motion on graphs (primary); Dynamic boundary conditions; Non-local operators; Fractional differential equations; DIFFUSION-PROCESSES; EQUATIONS;
D O I
10.1007/s13540-024-00336-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the construction of Brownian motions and related stochastic processes in a star graph, which is a non-Euclidean structure where some features of the classical modeling fail. We propose a probabilistic construction of the Sticky Brownian motion by slowing down the Brownian motion when in the vertex of the star graph. Later, we apply a random change of time to the previous construction, which leads to a trapping phenomenon in the vertex of the star graph, with characterization of the trap in terms of a singular measure Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}. The process associated to this time change is described here and, moreover, we show that it defines a probabilistic representation of the solution to a heat equation type problem on the star graph with non-local dynamic conditions in the vertex that can be written in terms of a Caputo-D & zcaron;rba & scaron;jan fractional derivative defined by the singular measure Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}. Extensions to general graph structures can be given by applying to our results a localisation technique.
引用
收藏
页码:2859 / 2891
页数:33
相关论文
共 50 条
  • [1] Large deviations for sticky Brownian motions
    Barraquand, Guillaume
    Rychnovsky, Mark
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 52
  • [2] The Bethe ansatz for sticky Brownian motions
    Brockington, Dom
    Warren, Jon
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 162 : 1 - 48
  • [3] Fick Law and Sticky Brownian Motions
    Thu Dang Thien Nguyen
    Journal of Statistical Physics, 2019, 174 : 494 - 518
  • [4] Fick Law and Sticky Brownian Motions
    Thu Dang Thien Nguyen
    JOURNAL OF STATISTICAL PHYSICS, 2019, 174 (02) : 494 - 518
  • [5] Brownian motions on metric graphs
    Kostrykin, Vadim
    Potthoff, Juergen
    Schrader, Robert
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (09)
  • [6] MULTIDIMENSIONAL STICKY BROWNIAN MOTIONS AS LIMITS OF EXCLUSION PROCESSES
    Racz, Miklos Z.
    Shkolnikov, Mykhaylo
    ANNALS OF APPLIED PROBABILITY, 2015, 25 (03): : 1155 - 1188
  • [7] Fractional boundary value problems and elastic sticky brownian motions
    D'Ovidio, Mirko
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2162 - 2202
  • [8] Harmonic functions of Brownian motions on metric graphs
    Fitzsimmons, Patrick J.
    Kuter, Kristin E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [9] Slowing time: Markov-modulated Brownian motions with a sticky boundary
    Latouche, Guy
    Nguyen, Giang T.
    STOCHASTIC MODELS, 2017, 33 (02) : 297 - 321
  • [10] Non-local skew and non-local skew sticky Brownian motions
    Colantoni, Fausto
    JOURNAL OF EVOLUTION EQUATIONS, 2025, 25 (02)