ALI-DPFL: Differentially Private Federated Learning with Adaptive Local Iterations

被引:0
|
作者
Ling, Xinpeng [1 ]
Fu, Jie [1 ]
Wang, Kuncan [1 ]
Liu, Haitao [1 ]
Chen, Zhili [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
differential privacy; federated learning; adaptive; convergence analysis; resource constrained;
D O I
10.1109/WoWMoM60985.2024.00062
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Federated Learning (FL) is a distributed machine learning technique that allows model training among multiple devices or organizations by sharing training parameters instead of raw data. However, adversaries can still infer individual information through inference attacks (e.g. differential attacks) on these training parameters. As a result, Differential Privacy (DP) has been widely used in FL to prevent such attacks. We consider differentially private federated learning in a resource-constrained scenario, where both privacy budget and communication rounds are constrained. By theoretically analyzing the convergence, we can find the optimal number of local Differential Privacy Stochastic Gradient Descent (DPSGD) iterations for clients between any two sequential global updates. Based on this, we design an algorithm of Differentially Private Federated Learning with Adaptive Local Iterations (ALI-DPFL). We experiment our algorithm on the MNIST, FashionMNIST and Cifar10 datasets, and demonstrate significantly better performances than previous work in the resource-constraint scenario. Code is available at https://github.com/KnightWan/ALI-DPFL.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 50 条
  • [41] A Socially Optimal Data Marketplace With Differentially Private Federated Learning
    Sun, Peng
    Liao, Guocheng
    Chen, Xu
    Huang, Jianwei
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (03) : 2221 - 2236
  • [42] An Optimized Sparse Response Mechanism for Differentially Private Federated Learning
    Ma, Jiating
    Zhou, Yipeng
    Cui, Laizhong
    Guo, Song
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 2285 - 2295
  • [43] Differentially Private Federated Learning via Reconfigurable Intelligent Surface
    Yang, Yuhan
    Zhou, Yong
    Wu, Youlong
    Shi, Yuanming
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20) : 19728 - 19743
  • [44] Differentially private federated learning with non-IID data
    Cheng, Shuyan
    Li, Peng
    Wang, Ruchuan
    Xu, He
    COMPUTING, 2024, 106 (07) : 2459 - 2488
  • [45] Differentially Private Federated Learning for Anomaly Detection in eHealth Networks
    Cholakoska, Ana
    Pfitzner, Bjarne
    Gjoreski, Hristijan
    Rakovic, Valentin
    Arnrich, Bert
    Kalendar, Marija
    UBICOMP/ISWC '21 ADJUNCT: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2021 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2021, : 514 - 518
  • [46] Generalized genomic data sharing for differentially private federated learning
    Al Aziz, Md Momin
    Anjum, Md Monowar
    Mohammed, Noman
    Jiang, Xiaoqian
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 132
  • [47] Differentially Private Federated Learning: An Information-Theoretic Perspective
    Asoodeh, Shahab
    Chen, Wei-Ning
    Calmon, Flavio P.
    Ozgur, Ayfer
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 344 - 349
  • [48] FedRecovery: Differentially Private Machine Unlearning for Federated Learning Frameworks
    Zhang, Lefeng
    Zhu, Tianqing
    Zhang, Haibin
    Xiong, Ping
    Zhou, Wanlei
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 4732 - 4746
  • [49] Incentivizing Differentially Private Federated Learning: A Multidimensional Contract Approach
    Wu, Maoqiang
    Ye, Dongdong
    Ding, Jiahao
    Guo, Yuanxiong
    Yu, Rong
    Pan, Miao
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10639 - 10651
  • [50] Differentially Private federated learning to Protect Identity in Stress Recognition
    Guelta, Bouchiba
    Benbakreti, Samir
    Boumediene, Kadda
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (06): : 36 - 41