ALI-DPFL: Differentially Private Federated Learning with Adaptive Local Iterations

被引:0
|
作者
Ling, Xinpeng [1 ]
Fu, Jie [1 ]
Wang, Kuncan [1 ]
Liu, Haitao [1 ]
Chen, Zhili [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
differential privacy; federated learning; adaptive; convergence analysis; resource constrained;
D O I
10.1109/WoWMoM60985.2024.00062
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Federated Learning (FL) is a distributed machine learning technique that allows model training among multiple devices or organizations by sharing training parameters instead of raw data. However, adversaries can still infer individual information through inference attacks (e.g. differential attacks) on these training parameters. As a result, Differential Privacy (DP) has been widely used in FL to prevent such attacks. We consider differentially private federated learning in a resource-constrained scenario, where both privacy budget and communication rounds are constrained. By theoretically analyzing the convergence, we can find the optimal number of local Differential Privacy Stochastic Gradient Descent (DPSGD) iterations for clients between any two sequential global updates. Based on this, we design an algorithm of Differentially Private Federated Learning with Adaptive Local Iterations (ALI-DPFL). We experiment our algorithm on the MNIST, FashionMNIST and Cifar10 datasets, and demonstrate significantly better performances than previous work in the resource-constraint scenario. Code is available at https://github.com/KnightWan/ALI-DPFL.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 50 条
  • [21] FLAME: Differentially Private Federated Learning in the Shuffle Model
    Liu, Ruixuan
    Cao, Yang
    Chen, Hong
    Guo, Ruoyang
    Yoshikawa, Masatoshi
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8688 - 8696
  • [22] Differentially Private Federated Learning with Heterogeneous Group Privacy
    Jiang, Mingna
    Wei, Linna
    Cai, Guoyue
    Wu, Xuangou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 143 - 150
  • [23] DPAUC: Differentially Private AUC Computation in Federated Learning
    Sun, Jiankai
    Yang, Xin
    Yao, Yuanshun
    Xie, Junyuan
    Wu, Di
    Wang, Chong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 15170 - 15178
  • [24] FLDS: differentially private federated learning with double shufflers
    Qi, Qingqiang
    Yang, Xingye
    Hu, Chengyu
    Tang, Peng
    Su, Zhiyuan
    Guo, Shanqing
    COMPUTER JOURNAL, 2024,
  • [25] Distributionally Robust Federated Learning for Differentially Private Data
    Shi, Siping
    Hu, Chuang
    Wang, Dan
    Zhu, Yifei
    Han, Zhu
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 842 - 852
  • [26] Evaluating the Impact of Mobility on Differentially Private Federated Learning
    Kim, Eun-ji
    Lee, Eun-Kyu
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [27] Differentially Private Federated Learning for Multitask Objective Recognition
    Xie, Renyou
    Li, Chaojie
    Zhou, Xiaojun
    Chen, Hongyang
    Dong, Zhaoyang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (05) : 7269 - 7281
  • [28] Make Landscape Flatter in Differentially Private Federated Learning
    Shi, Yifan
    Liu, Yingqi
    Wei, Kang
    Shen, Li
    Wang, Xueqian
    Tao, Dacheng
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24552 - 24562
  • [29] Concentrated Differentially Private Federated Learning With Performance Analysis
    Hu, Rui
    Guo, Yuanxiong
    Gong, Yanmin
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2021, 2 : 276 - 289
  • [30] Differentially Private Byzantine-Robust Federated Learning
    Ma, Xu
    Sun, Xiaoqian
    Wu, Yuduo
    Liu, Zheli
    Chen, Xiaofeng
    Dong, Changyu
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 3690 - 3701