Prediction of Gait Neurodegenerative Diseases by Variational Mode Decomposition Using Machine Learning Algorithms

被引:1
|
作者
Visvanathan, P. [1 ]
Vincent, P. M. Durai Raj [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci Engn & Informat Syst, Vellore 632014, TN, India
关键词
PARKINSONS-DISEASE; CLASSIFICATION; DISORDERS; FRAMEWORK;
D O I
10.1080/08839514.2024.2389375
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Degeneration in brain cells is the cause of neurodegenerative illness, which cause motor function impairment. Anomaly in walking is one of this impairment's adverse effects. Since sensor technologies and artificial intelligence applications have advanced in recent years, it is possible to predict a patient's disease severity from their gait data using a model helps to grade the severity of the patient disease. The proposed research work is developed using the gait neurodegenerative data composed of gait signals collected from physionet database. The composite non stationary and nonlinear gait signals are decomposed into different modes of Intrinsic Mode Function (IMF) using Variational Mode Decomposition (VMD). IMFs ensure the signals retrieved are stationary and linear. Power Spectral Density (PSD) is used to choose best IMF. Feature extraction for the chosen IMF is done with Shannon entropy technique. Prediction of different neurodegenerative disease such as Parkinsons Disease (PD), Huntingtons Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and healthy subjects are carried out by Multilayer Perceptron (MLP) with the parameters optimized with Genetic Algorithm (GA). The results of the experiments shows that the proposed model produces a better accuracy of 98.4% than the other existing algorithms for the gait dataset.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Diabetes Prediction Using Machine Learning Algorithms and Ontology
    El Massari H.
    Sabouri Z.
    Mhammedi S.
    Gherabi N.
    Journal of ICT Standardization, 2022, 10 (02): : 319 - 338
  • [42] Crop Prediction Model Using Machine Learning Algorithms
    Elbasi, Ersin
    Zaki, Chamseddine
    Topcu, Ahmet E.
    Abdelbaki, Wiem
    Zreikat, Aymen I.
    Cina, Elda
    Shdefat, Ahmed
    Saker, Louai
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [43] Prediction of Heart Disease Using Machine Learning Algorithms
    Krishnan, Santhana J.
    Geetha, S.
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [44] Prediction of Breast Cancer using Machine Learning Algorithms
    Mangal, Anuj
    Jain, Vinod
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 464 - 466
  • [45] Student Performance Prediction Using Machine Learning Algorithms
    Ahmed, Esmael
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2024, 2024
  • [46] House Price Prediction Using Machine Learning Algorithms
    Vineeth, Naalla
    Ayyappa, Maturi
    Bharathi, B.
    SOFT COMPUTING SYSTEMS, ICSCS 2018, 2018, 837 : 425 - 433
  • [47] Alzheimer Disease Prediction using Machine Learning Algorithms
    Neelaveni, J.
    Devasana, M. S. Geetha
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 101 - 104
  • [48] Heart Disease Prediction Using Machine Learning Algorithms
    Malavika, G.
    Rajathi, N.
    Vanitha, V.
    Parameswari, P.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 24 - 27
  • [49] Heart Attack Prediction using Machine Learning Algorithms
    Laxamana, Romeo Jousef A.
    Vale, Joan Marie
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (05) : 1428 - 1436
  • [50] Prediction of Dental Implants Using Machine Learning Algorithms
    Alharbi, Mafawez T.
    Almutiq, Mutiq M.
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022