Crop Prediction Model Using Machine Learning Algorithms

被引:23
|
作者
Elbasi, Ersin [1 ]
Zaki, Chamseddine [1 ]
Topcu, Ahmet E. [1 ]
Abdelbaki, Wiem [1 ]
Zreikat, Aymen I. [1 ]
Cina, Elda [1 ]
Shdefat, Ahmed [1 ]
Saker, Louai [1 ]
机构
[1] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 16期
关键词
crop prediction; machine learning; feature selection; artificial intelligent; smart farming; FRUIT;
D O I
10.3390/app13169288
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Machine learning applications are having a great impact on the global economy by transforming the data processing method and decision making. Agriculture is one of the fields where the impact is significant, considering the global crisis for food supply. This research investigates the potential benefits of integrating machine learning algorithms in modern agriculture. The main focus of these algorithms is to help optimize crop production and reduce waste through informed decisions regarding planting, watering, and harvesting crops. This paper includes a discussion on the current state of machine learning in agriculture, highlighting key challenges and opportunities, and presents experimental results that demonstrate the impact of changing labels on the accuracy of data analysis algorithms. The findings recommend that by analyzing wide-ranging data collected from farms, incorporating online IoT sensor data that were obtained in a real-time manner, farmers can make more informed verdicts about factors that affect crop growth. Eventually, integrating these technologies can transform modern agriculture by increasing crop yields while minimizing waste. Fifteen different algorithms have been considered to evaluate the most appropriate algorithms to use in agriculture, and a new feature combination scheme-enhanced algorithm is presented. The results show that we can achieve a classification accuracy of 99.59% using the Bayes Net algorithm and 99.46% using Naive Bayes Classifier and Hoeffding Tree algorithms. These results will indicate an increase in production rates and reduce the effective cost for the farms, leading to more resilient infrastructure and sustainable environments. Moreover, the findings we obtained in this study can also help future farmers detect diseases early, increase crop production efficiency, and reduce prices when the world is experiencing food shortages.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Crop Yield Prediction Using Machine Learning Algorithms
    Nigam, Aruvansh
    Garg, Saksham
    Agrawal, Archit
    Agrawal, Parul
    [J]. 2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 125 - 130
  • [2] Crop Price Prediction Using Machine Learning Naive Bayes Algorithms
    Vikram, R.
    Divij, R.
    Hishore, N.
    Naveen, G.
    Rudhramoorthy, D.
    [J]. UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 27 - 34
  • [3] Prediction of Crop Water Stress Index (CWSI) Using Machine Learning Algorithms
    Narakala, Likith Muni
    Yadav, Aditi
    Upreti, Hitesh
    Das Singhal, Gopal
    [J]. WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2024: CLIMATE CHANGE IMPACTS ON THE WORLD WE LIVE IN, 2024, : 969 - 980
  • [4] A Model for Business Success Prediction using Machine Learning Algorithms
    Afolabi, Ibukun
    Ifunaya, T. Cordelia
    Ojo, Funmilayo G.
    Moses, Chinonye
    [J]. 3RD INTERNATIONAL CONFERENCE ON SCIENCE AND SUSTAINABLE DEVELOPMENT (ICSSD 2019): SCIENCE, TECHNOLOGY AND RESEARCH: KEYS TO SUSTAINABLE DEVELOPMENT, 2019, 1299
  • [5] Crop Yield Analysis Using Machine Learning Algorithms
    Haque, Fatin Farhan
    Abdelgawad, Ahmed
    Yanambaka, Venkata Prasanth
    Yelamarthi, Kumar
    [J]. 2020 IEEE 6TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2020,
  • [6] The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms
    Zhao, Yanxi
    Xiao, Dengpan
    Bai, Huizi
    Tang, Jianzhao
    Liu, De Li
    Qi, Yongqing
    Shen, Yanjun
    [J]. AGRICULTURE-BASEL, 2023, 13 (01):
  • [7] Diabetes Prediction using Machine Learning Algorithms
    Mujumdar, Aishwarya
    Vaidehi, V.
    [J]. 2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 292 - 299
  • [8] Stock Prediction Using Machine Learning Algorithms
    Kohli, Pahul Preet Singh
    Zargar, Seerat
    Arora, Shriya
    Gupta, Parimal
    [J]. APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 405 - 414
  • [9] Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model
    Ge, Jiankun
    Zhao, Linfeng
    Yu, Zihui
    Liu, Huanhuan
    Zhang, Lei
    Gong, Xuewen
    Sun, Huaiwei
    [J]. PLANTS-BASEL, 2022, 11 (15):
  • [10] Crop Yield Prediction through Proximal Sensing and Machine Learning Algorithms
    Abbas, Farhat
    Afzaal, Hassan
    Farooque, Aitazaz A.
    Tang, Skylar
    [J]. AGRONOMY-BASEL, 2020, 10 (07):