Digital In-Memory Computing to Accelerate Deep Learning Inference on the Edge

被引:0
|
作者
Perri, Stefania [1 ]
Zambelli, Cristian [2 ]
Ielmini, Daniele [3 ]
Silvano, Cristina [3 ]
机构
[1] Univ Calabria, Arcavacata Di Rende, Italy
[2] Univ Ferrara, Ferrara, Italy
[3] Politecn Milan, Milan, Italy
关键词
D O I
10.1109/IPDPSW63119.2024.00037
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deploying Deep Learning (DL) models on edge devices presents several challenges due to the limited set of processing and memory resources, and the bandwidth constraints while ensuring performance and energy requirements. In-memory computing (IMC) represents an efficient way to accelerate the inference of data-intensive DL tasks on the edge. Recently, several analog, digital, and mixed digital-analog memory technologies emerged as promising solutions for IMC. Among them, digital SRAM IMC exhibits a deterministic behavior and compatibility with advanced technology scaling rules making it a viable path for integration with hardware accelerators. This work focuses on discussing the potentially powerful aspects of digital IMC (DIMC) on edge System-on-Chip (SoC) devices. The limitations and ()pen challenges of DIMC are also discussed.
引用
下载
收藏
页码:130 / 133
页数:4
相关论文
共 50 条
  • [1] In-Memory Computing for Machine Learning and Deep Learning
    Lepri, N.
    Glukhov, A.
    Cattaneo, L.
    Farronato, M.
    Mannocci, P.
    Ielmini, D.
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2023, 11 : 587 - 601
  • [2] Error Resilient In-Memory Computing Architecture for CNN Inference on the Edge
    Rios, Marco
    Ponzina, Flavio
    Ansaloni, Giovanni
    Levisse, Alexandre
    Atienza, David
    PROCEEDINGS OF THE 32ND GREAT LAKES SYMPOSIUM ON VLSI 2022, GLSVLSI 2022, 2022, : 249 - 254
  • [3] Deep learning acceleration based on in-memory computing
    Eleftheriou, E.
    Le Gallo, M.
    Nandakumar, S. R.
    Piveteau, C.
    Boybat, I
    Joshi, V
    Khaddam-Aljameh, R.
    Dazzi, M.
    Giannopoulos, I
    Karunaratne, G.
    Kersting, B.
    Stanisavljevic, M.
    Jonnalagadda, V. P.
    Ioannou, N.
    Kourtis, K.
    Francese, P. A.
    Sebastian, A.
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2019, 63 (06)
  • [4] AI: From Deep Learning to In-Memory Computing
    Lung, Hsiang-Lan
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXIII, 2019, 10959
  • [5] Deep Bayesian active learning using in-memory computing hardware
    Yudeng Lin
    Bin Gao
    Jianshi Tang
    Qingtian Zhang
    He Qian
    Huaqiang Wu
    Nature Computational Science, 2025, 5 (1): : 27 - 36
  • [6] Hybrid Digital-Digital In-Memory Computing
    Rashed, Muhammad Rashedul Haq
    Jha, Sumit Kumar
    Yao, Fan
    Ewetz, Rickard
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 1177 - 1180
  • [7] Logic Synthesis for Digital In-Memory Computing
    Rashed, Muhammad Rashedul Haq
    Jha, Sumit Kumar
    Ewetz, Rickard
    2022 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2022,
  • [8] Automated Ensemble for Deep Learning Inference on Edge Computing Platforms
    Bai, Yang
    Chen, Lixing
    Abdel-Mottaleb, Mohamed
    Xu, Jie
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (06): : 4202 - 4213
  • [9] RLink: Accelerate On-Device Deep Reinforcement Learning with Inference Knowledge at the Edge
    Zeng, Tianyu
    Zhang, Xiaoxi
    Feng, Daipeng
    Duan, Jingpu
    Zhou, Zhi
    Chen, Xu
    2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 628 - 635
  • [10] Deep learning incorporating biologically inspired neural dynamics and in-memory computing
    Stanisław Woźniak
    Angeliki Pantazi
    Thomas Bohnstingl
    Evangelos Eleftheriou
    Nature Machine Intelligence, 2020, 2 : 325 - 336