Digital In-Memory Computing to Accelerate Deep Learning Inference on the Edge

被引:0
|
作者
Perri, Stefania [1 ]
Zambelli, Cristian [2 ]
Ielmini, Daniele [3 ]
Silvano, Cristina [3 ]
机构
[1] Univ Calabria, Arcavacata Di Rende, Italy
[2] Univ Ferrara, Ferrara, Italy
[3] Politecn Milan, Milan, Italy
关键词
D O I
10.1109/IPDPSW63119.2024.00037
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deploying Deep Learning (DL) models on edge devices presents several challenges due to the limited set of processing and memory resources, and the bandwidth constraints while ensuring performance and energy requirements. In-memory computing (IMC) represents an efficient way to accelerate the inference of data-intensive DL tasks on the edge. Recently, several analog, digital, and mixed digital-analog memory technologies emerged as promising solutions for IMC. Among them, digital SRAM IMC exhibits a deterministic behavior and compatibility with advanced technology scaling rules making it a viable path for integration with hardware accelerators. This work focuses on discussing the potentially powerful aspects of digital IMC (DIMC) on edge System-on-Chip (SoC) devices. The limitations and ()pen challenges of DIMC are also discussed.
引用
收藏
页码:130 / 133
页数:4
相关论文
共 50 条
  • [41] Scalable In-Memory Computing
    Uta, Alexandru
    Sandu, Andreea
    Costache, Stefania
    Kielmann, Thilo
    2015 15TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING, 2015, : 805 - 810
  • [42] Computing In-Memory, Revisited
    Milojicic, Dejan
    Bresniker, Kirk
    Campbell, Gary
    Faraboschi, Paolo
    Strachan, John Paul
    Williams, Stan
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2018, : 1300 - 1309
  • [43] Hyperspectral In-Memory Computing
    Latifpour, Mostafa Honari
    Park, Byoung Jun
    Yamamoto, Yoshihisa
    Suh, Myoung-Gyun
    2024 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, OFC, 2024,
  • [44] In-memory mechanical computing
    Tie Mei
    Chang Qing Chen
    Nature Communications, 14
  • [45] In-memory computing with ferroelectrics
    Rui Yang
    Nature Electronics, 2020, 3 : 237 - 238
  • [46] In-memory mechanical computing
    Mei, Tie
    Chen, Chang Qing
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [47] In-memory hyperdimensional computing
    Geethan Karunaratne
    Manuel Le Gallo
    Giovanni Cherubini
    Luca Benini
    Abbas Rahimi
    Abu Sebastian
    Nature Electronics, 2020, 3 : 327 - 337
  • [48] In-memory hyperdimensional computing
    Karunaratne, Geethan
    Le Gallo, Manuel
    Cherubini, Giovanni
    Benini, Luca
    Rahimi, Abbas
    Sebastian, Abu
    NATURE ELECTRONICS, 2020, 3 (06) : 327 - +
  • [49] Digital-Assisted Analog In-Memory Computing with RRAM Devices
    Wang, Zhenyu
    Nalla, Pragnya Sudershan
    Krishnan, Gokul
    Joshi, Rajiv V.
    Cady, Nathaniel C.
    Fan, Deliang
    Seo, Jae-sun
    Cao, Yu
    2023 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI-TSA/VLSI-DAT, 2023,
  • [50] Variation-Resilient FeFET-Based In-Memory Computing Leveraging Probabilistic Deep Learning
    Manna, Bibhas
    Saha, Arnob
    Jiang, Zhouhang
    Ni, Kai
    Sengupta, Abhronil
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (05) : 2963 - 2969