Generative subgoal oriented multi-agent reinforcement learning through potential field

被引:0
|
作者
Li, Shengze [1 ]
Jiang, Hao [1 ]
Liu, Yuntao [1 ]
Zhang, Jieyuan [1 ]
Xu, Xinhai [1 ]
Liu, Donghong [1 ]
机构
[1] Acad Mil Sci, Beijing 100000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-agent reinforcement learning; Subgoal generation; Potential field;
D O I
10.1016/j.neunet.2024.106552
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-agent reinforcement learning (MARL) effectively improves the learning speed of agents in sparse reward tasks with the guide of subgoals. However, existing works sever the consistency of the learning objectives of the subgoal generation and subgoal reached stages, thereby significantly inhibiting the effectiveness of subgoal learning. To address this problem, we propose a novel Potential field Subgoal-based Multi-Agent reinforcement learning (PSMA) method, which introduces the potential field (PF) to unify the two-stage learning objectives. Specifically, we design a state-to-PF representation model that describes agents' states as potential fields, allowing easy measurement of the interaction effect for both allied and enemy agents. With the PF representation, a subgoal selector is designed to automatically generate multiple subgoals for each agent, drawn from the experience replay buffer that contains both individual and total PF values. Based on the determined subgoals, we define an intrinsic reward function to guide the agent to reach their respective subgoals while maximizing the joint action-value. Experimental results show that our method outperforms the state-of-the-art MARL method on both StarCraft II micro-management (SMAC) and Google Research Football (GRF) tasks with sparse reward settings.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Multi-agent Reinforcement Learning in Network Management
    Bagnasco, Ricardo
    Serrat, Joan
    SCALABILITY OF NETWORKS AND SERVICES, PROCEEDINGS, 2009, 5637 : 199 - 202
  • [42] Reinforcement learning of multi-agent communicative acts
    Hoet S.
    Sabouret N.
    Revue d'Intelligence Artificielle, 2010, 24 (02) : 159 - 188
  • [43] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [44] Quantum Multi-Agent Meta Reinforcement Learning
    Yun, Won Joon
    Park, Jihong
    Kim, Joongheon
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11087 - 11095
  • [45] Multi-agent reinforcement learning for intrusion detection
    Servin, Arturo
    Kudenko, Daniel
    ADAPTIVE AGENTS AND MULTI-AGENT SYSTEMS, 2008, 4865 : 211 - 223
  • [46] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [47] Multi-Agent Reinforcement Learning with Reward Delays
    Zhang, Yuyang
    Zhang, Runyu
    Gu, Yuantao
    Li, Na
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [48] Reinforcement learning based on multi-agent in RoboCup
    Zhang, W
    Li, JG
    Ruan, XG
    ADVANCES IN INTELLIGENT COMPUTING, PT 1, PROCEEDINGS, 2005, 3644 : 967 - 975
  • [49] A Review of Multi-Agent Reinforcement Learning Algorithms
    Liang, Jiaxin
    Miao, Haotian
    Li, Kai
    Tan, Jianheng
    Wang, Xi
    Luo, Rui
    Jiang, Yueqiu
    ELECTRONICS, 2025, 14 (04):
  • [50] Multi-Agent Adversarial Inverse Reinforcement Learning
    Yu, Lantao
    Song, Jiaming
    Ermon, Stefano
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97