Generative subgoal oriented multi-agent reinforcement learning through potential field

被引:0
|
作者
Li, Shengze [1 ]
Jiang, Hao [1 ]
Liu, Yuntao [1 ]
Zhang, Jieyuan [1 ]
Xu, Xinhai [1 ]
Liu, Donghong [1 ]
机构
[1] Acad Mil Sci, Beijing 100000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-agent reinforcement learning; Subgoal generation; Potential field;
D O I
10.1016/j.neunet.2024.106552
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-agent reinforcement learning (MARL) effectively improves the learning speed of agents in sparse reward tasks with the guide of subgoals. However, existing works sever the consistency of the learning objectives of the subgoal generation and subgoal reached stages, thereby significantly inhibiting the effectiveness of subgoal learning. To address this problem, we propose a novel Potential field Subgoal-based Multi-Agent reinforcement learning (PSMA) method, which introduces the potential field (PF) to unify the two-stage learning objectives. Specifically, we design a state-to-PF representation model that describes agents' states as potential fields, allowing easy measurement of the interaction effect for both allied and enemy agents. With the PF representation, a subgoal selector is designed to automatically generate multiple subgoals for each agent, drawn from the experience replay buffer that contains both individual and total PF values. Based on the determined subgoals, we define an intrinsic reward function to guide the agent to reach their respective subgoals while maximizing the joint action-value. Experimental results show that our method outperforms the state-of-the-art MARL method on both StarCraft II micro-management (SMAC) and Google Research Football (GRF) tasks with sparse reward settings.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
    Xu, Zhiwei
    Zhang, Bin
    Li, Dapeng
    Zhang, Zeren
    Zhou, Guangchong
    Chen, Hao
    Fan, Guoliang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11726 - 11734
  • [32] Concept Learning for Interpretable Multi-Agent Reinforcement Learning
    Zabounidis, Renos
    Campbell, Joseph
    Stepputtis, Simon
    Hughes, Dana
    Sycara, Katia
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1828 - 1837
  • [33] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [34] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [35] Generalized learning automata for multi-agent reinforcement learning
    De Hauwere, Yann-Michael
    Vrancx, Peter
    Nowe, Ann
    AI COMMUNICATIONS, 2010, 23 (04) : 311 - 324
  • [36] Multi-agent reinforcement learning for character control
    Li, Cheng
    Fussell, Levi
    Komura, Taku
    VISUAL COMPUTER, 2021, 37 (12): : 3115 - 3123
  • [37] Parallel and distributed multi-agent reinforcement learning
    Kaya, M
    Arslan, A
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, 2001, : 437 - 441
  • [38] Coding for Distributed Multi-Agent Reinforcement Learning
    Wang, Baoqian
    Xie, Junfei
    Atanasov, Nikolay
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 10625 - 10631
  • [39] Multi-agent Reinforcement Learning for Service Composition
    Lei, Yu
    Yu, Philip S.
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2016), 2016, : 790 - 793
  • [40] Multi-agent reinforcement learning with adaptive mimetism
    Yamaguchi, T
    Miura, M
    Yachida, M
    ETFA '96 - 1996 IEEE CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, PROCEEDINGS, VOLS 1 AND 2, 1996, : 288 - 294