Bilateral Symmetric non-Euclidean multi-frequency invisibility

被引:0
|
作者
Ge, Yixiao [1 ,2 ]
Gong, Desen [1 ,2 ]
Xiao, Wen [1 ,2 ,3 ]
Chen, Huanyang [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Inst Electromagnet & Acoust, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Jiujiang Res Inst, Jiujiang 332000, Jiangxi, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 17期
基金
中国博士后科学基金;
关键词
TRANSFORMATION; DEVICES;
D O I
10.1364/OE.529407
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Light propagation in non-Euclidean geometry has become a hot topic in recent years, while transformation optics theory demonstrates unique advantages in this respect. A notable application of transformation optics in non-Euclidean space is non-Euclidean invisibility cloak which avoids the challenges of negative refraction and anisotropic materials. In this work, we propose another configuration for non-Euclidean invisibility, capable of achieving invisible across a wide spectrum. Using coordinate transformation, we convert this non-Euclidean invisibility into planar gradient medium and validate its effects through full wave simulations. We also discover that the corresponding gradient medium can further relax the material parameters. Our findings suggest diverse strategies for non-Euclidean invisibility and planar gradient media, potentially advancing optical invisibility and transformation optics in non-Euclidean spaces.
引用
收藏
页码:30531 / 30540
页数:10
相关论文
共 50 条
  • [1] Non-Euclidean Ideas for Broadband Invisibility
    Leonhardt, Ulf
    Tyc, Tomas
    Chen, Huanyang
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2495 - +
  • [2] Broadband Invisibility by Non-Euclidean Cloaking
    Leonhardt, Ulf
    Tyc, Tomas
    SCIENCE, 2009, 323 (5910) : 110 - 112
  • [3] The non-Euclidean Euclidean algorithm
    Gilman, Jane
    ADVANCES IN MATHEMATICS, 2014, 250 : 227 - 241
  • [4] EUCLIDEAN AND NON-EUCLIDEAN ILLUSIONS
    RAINVILLE, RE
    DUSEK, V
    PERCEPTUAL AND MOTOR SKILLS, 1972, 34 (03) : 916 - +
  • [5] THE NON-EUCLIDEAN MIRROR
    FULTON, CM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (03) : 331 - 333
  • [6] Non-Euclidean geometries
    Mathews, GB
    NATURE, 1921, 106 : 790 - 791
  • [7] Non-Euclidean analysis
    Helgason, S
    Non-Euclidean Geometries, 2006, 581 : 367 - 384
  • [8] ON NON-EUCLIDEAN MANIFOLDS
    HADJIIVANOV, NG
    TODOROV, VT
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1980, 33 (04): : 449 - 452
  • [9] Non-euclidean geometry
    Sommerville, DMY
    NATURE, 1912, 88 : 8 - 8
  • [10] On Euclidean Corrections for Non-Euclidean Dissimilarities
    Duin, Robert P. W.
    Pekalska, Elzbieta
    Harol, Artsiom
    Lee, Wan-Jui
    Bunke, Horst
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2008, 5342 : 551 - +