Bilateral Symmetric non-Euclidean multi-frequency invisibility

被引:0
|
作者
Ge, Yixiao [1 ,2 ]
Gong, Desen [1 ,2 ]
Xiao, Wen [1 ,2 ,3 ]
Chen, Huanyang [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Inst Electromagnet & Acoust, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Jiujiang Res Inst, Jiujiang 332000, Jiangxi, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 17期
基金
中国博士后科学基金;
关键词
TRANSFORMATION; DEVICES;
D O I
10.1364/OE.529407
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Light propagation in non-Euclidean geometry has become a hot topic in recent years, while transformation optics theory demonstrates unique advantages in this respect. A notable application of transformation optics in non-Euclidean space is non-Euclidean invisibility cloak which avoids the challenges of negative refraction and anisotropic materials. In this work, we propose another configuration for non-Euclidean invisibility, capable of achieving invisible across a wide spectrum. Using coordinate transformation, we convert this non-Euclidean invisibility into planar gradient medium and validate its effects through full wave simulations. We also discover that the corresponding gradient medium can further relax the material parameters. Our findings suggest diverse strategies for non-Euclidean invisibility and planar gradient media, potentially advancing optical invisibility and transformation optics in non-Euclidean spaces.
引用
收藏
页码:30531 / 30540
页数:10
相关论文
共 50 条
  • [41] Windows into non-Euclidean spaces
    Oxburgh, Stephen
    White, Chris D.
    Antoniou, Georgios
    Mertens, Lena
    Mullen, Christopher
    Ramsay, Jennifer
    McCall, Duncan
    Courtial, Johannes
    NOVEL OPTICAL SYSTEMS DESIGN AND OPTIMIZATION XVII, 2014, 9193
  • [42] Non-Euclidean spring embedders
    Kobourov, SG
    Wampler, K
    IEEE SYMPOSIUM ON INFORMATION VISUALIZATION 2004, PROCEEDINGS, 2004, : 207 - 214
  • [43] THE ELEMENTS OF NON-EUCLIDEAN GEOMETRY
    不详
    EDUCATION, 1920, 41 (03): : 206 - 206
  • [44] SOUNDINGS IN NON-EUCLIDEAN ECONOMICS
    Clark, John Maurice
    AMERICAN ECONOMIC REVIEW, 1921, 11 (01): : 132 - 147
  • [45] Non-Euclidean visibility problems
    Fernando Chamizo
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 147 - 160
  • [46] Non-euclidean geometry.
    Frankland, WB
    NATURE, 1911, 87 : 347 - 347
  • [47] ON NON-EUCLIDEAN CRYSTALLOGRAPHIC GROUPS
    WILKIE, HC
    MATHEMATISCHE ZEITSCHRIFT, 1966, 91 (02) : 87 - &
  • [48] Gauss and non-Euclidean geometry
    Gray, J
    Non-Euclidean Geometries, 2006, 581 : 61 - 80
  • [49] Kant and non-Euclidean geometry
    Hagar, Amit
    KANT-STUDIEN, 2008, 99 (01) : 80 - 98
  • [50] The mechanics of non-Euclidean plates
    Sharon, Eran
    Efrati, Efi
    SOFT MATTER, 2010, 6 (22) : 5693 - 5704