Non-Euclidean Ideas for Broadband Invisibility

被引:0
|
作者
Leonhardt, Ulf [1 ,2 ]
Tyc, Tomas [1 ,3 ]
Chen, Huanyang [4 ]
机构
[1] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[2] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[3] Masaryk Univ, Inst Theoret Phys & Astrophys, C-61137 Brno, Czech Republic
[4] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Peoples R China
关键词
NEGATIVE REFRACTION; METAMATERIAL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Invisibility and negative refraction are both applications of transformation optics where the material of a device performs a coordinate transformation for electromagnetic fields. The device creates the illusion that light propagates through empty flat space, whereas in physical space light is bent around a hidden interior or seems to run backwards in space or time. All the previous proposals for invisibility require materials with extreme properties. We show that transformation optics of a curved, non-Euclidean space, such as the surface of a virtual sphere, relaxes these requirements and can lead to invisibility in a broad band of the spectrum. (C)2009 Optical Society of America
引用
收藏
页码:2495 / +
页数:2
相关论文
共 50 条
  • [1] Broadband Invisibility by Non-Euclidean Cloaking
    Leonhardt, Ulf
    Tyc, Tomas
    SCIENCE, 2009, 323 (5910) : 110 - 112
  • [2] IDEAS OF SPACE - EUCLIDEAN, NON-EUCLIDEAN, AND RELATIVISTIC - GRAY,J
    BRISSON, DW
    LEONARDO, 1982, 15 (03) : 248 - 248
  • [3] Bilateral Symmetric non-Euclidean multi-frequency invisibility
    Ge, Yixiao
    Gong, Desen
    Xiao, Wen
    Chen, Huanyang
    OPTICS EXPRESS, 2024, 32 (17): : 30531 - 30540
  • [4] The non-Euclidean Euclidean algorithm
    Gilman, Jane
    ADVANCES IN MATHEMATICS, 2014, 250 : 227 - 241
  • [5] EUCLIDEAN AND NON-EUCLIDEAN ILLUSIONS
    RAINVILLE, RE
    DUSEK, V
    PERCEPTUAL AND MOTOR SKILLS, 1972, 34 (03) : 916 - +
  • [6] THE NON-EUCLIDEAN MIRROR
    FULTON, CM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (03) : 331 - 333
  • [7] Non-Euclidean geometries
    Mathews, GB
    NATURE, 1921, 106 : 790 - 791
  • [8] Non-Euclidean analysis
    Helgason, S
    Non-Euclidean Geometries, 2006, 581 : 367 - 384
  • [9] ON NON-EUCLIDEAN MANIFOLDS
    HADJIIVANOV, NG
    TODOROV, VT
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1980, 33 (04): : 449 - 452
  • [10] Non-euclidean geometry
    Sommerville, DMY
    NATURE, 1912, 88 : 8 - 8