Methodology for the Prediction of the Thermal Conductivity of Concrete by Using Neural Networks

被引:0
|
作者
Rosa, Ana Carolina [1 ,2 ]
Elomari, Youssef [2 ]
Calderon, Alejandro [3 ]
Mateu, Carles [4 ]
Haddad, Assed [1 ]
Boer, Dieter [2 ]
机构
[1] Univ Fed Rio de Janeiro, Environm Engn Program, BR-21941901 Rio De Janeiro, Brazil
[2] Univ Rovira i Virgili, Dept Mech Engn, Ave Paisos Catalans 26, Tarragona 43007, Spain
[3] Univ Barcelona, Dept Mat Sci & Phys Chem, Marti i Franques 1-11, Barcelona 08028, Spain
[4] Univ Lleida, Dept Comp Sci & Ind Engn, Lleida 25003, Spain
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
关键词
artificial neural networks; MLP; GAN; concrete; thermal conductivity; COMPRESSIVE STRENGTH; PERFORMANCE; POWDER; IMPACT;
D O I
10.3390/app14177598
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The energy consumption of buildings presents a significant concern, which has led to a demand for materials with better thermal performance. Thermal conductivity (TC), among the most relevant thermal properties, is essential to address this demand. This study introduces a methodology integrating a Multilayer Perceptron (MLP) and a Generative Adversarial Network (GAN) to predict the TC of concrete based on its mass composition and density. Three scenarios using experimental data from published papers and synthetic data are compared and reveal the model's outstanding performance across training, validation, and test datasets. Notably, the MLP trained on the GAN-augmented dataset outperforms the one with the real dataset, demonstrating remarkable consistency between the model's predictions and the actual values. Achieving an RMSE of 0.0244 and an R2 of 0.9975, these outcomes can offer precise quantitative information and advance energy-efficient materials.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [21] Concrete strength prediction with neural networks
    Bai, J.
    Wild, S.
    Sabir, B. B.
    Morris, C. W.
    Angel, P.
    Proceedings of The Seventh International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering, 2003, : 151 - 152
  • [22] Prediction of thermal conductivity of various nanofluids using artificial neural network
    Ahmadloo, Ebrahim
    Azizi, Sadra
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 74 : 69 - 75
  • [23] Prediction of thermal conductivity of pure liquids and mixtures using neural network
    Lu, ML
    McGreavy, C
    Kam, EKT
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1997, 30 (03) : 412 - 420
  • [24] Solar Irradiance Fluctuation Prediction Methodology Using Artificial Neural Networks
    Kamadinata, Jane Oktavia
    Ken, Tan Lit
    Suwa, Tohru
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (03):
  • [25] Correlating of Thermal Conductivity of monatomic Gases Using Artificial Neural Networks
    Melzi, Naima
    Khaouane, Latifa
    Hanini, Salah
    Laidi, Maamar
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON APPLIED SMART SYSTEMS (ICASS), 2018,
  • [26] Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks
    Papari, Mohammad M.
    Yousefi, Fakhri
    Moghadasi, Jalil
    Karimi, Hajir
    Campo, Antonio
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (01) : 44 - 52
  • [27] Nonlinear fitting calculation of wood thermal conductivity using neural networks
    Xu, Xu
    Yu, Zi-Tao
    Hu, Ya-Cai
    Fan, Li-Wu
    Tian, Tian
    Cen, Ke-Fa
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2007, 41 (07): : 1201 - 1204
  • [28] Estimation of thermal conductivity of pure gases by using artificial neural networks
    Eslamloueyan, R.
    Khademi, M. H.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2009, 48 (06) : 1094 - 1101
  • [29] Using Neural Networks for Prediction of Properties of Polymer Concrete with Fly Ash
    Barbuta, Marinela
    Diaconescu, Rodica-Mariana
    Harja, Maria
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2012, 24 (05) : 523 - 528
  • [30] Prediction of concrete compressive strength using evolved polynomial neural networks
    Hamid-Zadeh, N.
    Jamali, A.
    Nariman-Zadeh, N.
    Akbarzadeh, H.
    WSEAS Transactions on Systems, 2007, 6 (04): : 802 - 807