Modulating the Thermoresponsive Characteristics of PLGA-PEG-PLGA Hydrogels via Manipulation of PLGA Monomer Sequences

被引:5
|
作者
Jo, SeongHoon [1 ]
Roh, Soonjong [1 ,4 ]
Shim, Jaemin [6 ]
Yu, Ji Woong [7 ]
Jung, Youngmee [1 ,5 ]
Jang, Woo Young [2 ,3 ]
Seo, Bumjoon [6 ]
Won, You-Yeon [8 ,9 ]
Yoo, Jin [1 ,5 ]
机构
[1] Korea Inst Sci & Technol KIST, Biomed Res Inst, Ctr Biomat, Seoul 02792, South Korea
[2] Korea Univ, Coll Med, Dept Orthoped Surg, Seoul 02841, South Korea
[3] Korea Univ, Inst Nano Regenerat Reconstruct, Seoul 02841, South Korea
[4] Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Dept Appl Bioengn, Seoul 08826, South Korea
[5] Korea Univ Sci & Technol UST, KIST Sch, Div Biomed Sci & Technol, Seoul 02792, South Korea
[6] Seoul Natl Univ Sci & Technol, Dept Chem Biol Engn, Seoul 01811, South Korea
[7] Korea Inst Adv Study, Ctr AI & Nat Sci, Seoul 02455, South Korea
[8] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
[9] Purdue Univ, Purdue Univ Ctr Canc Res, W Lafayette, IN 47906 USA
基金
新加坡国家研究基金会;
关键词
DRUG-RELEASE; POLY(LACTIC-CO-GLYCOLIC ACID); THERMOREVERSIBLE GELATION; TRIBLOCK COPOLYMERS; L-LACTIDE; BLOCK; POLYMERIZATION; HYDROLYSIS; PACLITAXEL; GLYCOLIDE;
D O I
10.1021/acs.biomac.4c00817
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hydrogels are promising materials for biomedical applications, particularly in drug delivery and tissue engineering. This study highlights thermoresponsive hydrogels, specifically poly(lactic-co-glycolic acid) (PLGA)-poly(ethylene glycol) (PEG)-PLGA triblock copolymers, and introduces a feed rate-controlled polymerization (FRCP) method. By utilizing an organic catalyst and regulating the monomer feed rate, the sequence distribution of PLGA within the triblock copolymer is controlled. Various analyses, including 13C NMR and rheological measurements, were conducted to investigate the impact of sequence distribution. Results show that altering sequence distribution significantly influences the sol-gel transition, hydrophobicity-hydrophilicity balance, and drug release profile. Increased sequence uniformity lowers the glass transition temperature, raises the sol-gel transition temperature due to enhanced hydrophilicity, and promotes a more uniform drug (curcumin) distribution within the PLGA domain, resulting in a slower release rate. This study emphasizes the importance of PLGA sequence distribution in biomedical applications and the potential of FRCP to tailor thermoresponsive hydrogels for biomedical advancements.
引用
收藏
页码:5374 / 5386
页数:13
相关论文
共 50 条
  • [11] In Vitro Evaluation and Dissipative Particle Dynamics Simulation of PLGA-PEG-PLGA
    Cao, Yang
    Wang, Bochu
    Yang, Lichun
    Wang, Yazhou
    Singh, Gurinder K.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (03)
  • [12] PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate
    Gao, Yuan
    Sun, Yan
    Ren, Fuzheng
    Gao, Shen
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2010, 36 (10) : 1131 - 1138
  • [13] Hydrogels Composed of Cyclodextrin Inclusion Complexes with PLGA-PEG-PLGA Triblock Copolymers as Drug Delivery Systems
    Elham Khodaverdi
    Farnaz Sadat Mirzazadeh Tekie
    Farzin Hadizadeh
    Haydar Esmaeel
    Seyed Ahmad Mohajeri
    Sayyed A. Sajadi Tabassi
    Gholamhossein Zohuri
    AAPS PharmSciTech, 2014, 15 : 177 - 188
  • [14] Synthesis of PEG-PLGA diblock with high PEG/PLGA block ratio for the PEG-PLGA/laponite hydrogels with thermoresponsive sol-gel transitions
    Maeda, Tomoki
    Kitagawa, Midori
    Hotta, Atsushi
    Koizumi, Satoshi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [15] 5-Fluorouracil loaded thermosensitive PLGA-PEG-PLGA hydrogels for the prevention of postoperative tendon adhesion
    Yuan, Baoming
    He, Chaoliang
    Dong, Xiaoming
    Wang, Jincheng
    Gao, Zhongli
    Wang, Qian
    Tian, Huayu
    Chen, Xuesi
    RSC ADVANCES, 2015, 5 (32): : 25295 - 25303
  • [16] Preparation and the Antibacterial Activity of AgNPs/PLGA-PEG-PLGA Composite Hydrogel
    Yuan Baoming
    Dong Xiaoming
    Yang Fan
    Peng Chuangang
    Wang Jincheng
    Wu Dankai
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2019, 40 (10): : 2225 - 2232
  • [17] Application of PLGA-PEG-PLGA Nanoparticles to Percutaneous Immunotherapy for Food Allergy
    Sakurai, Ryuse
    Iwata, Hanae
    Gotoh, Masaki
    Ogino, Hiroyuki
    Takeuchi, Issei
    Makino, Kimiko
    Itoh, Fumio
    Saitoh, Akiyoshi
    MOLECULES, 2024, 29 (17):
  • [18] Localised delivery of quercetin by thermo-sensitive PLGA-PEG-PLGA hydrogels for the treatment of brachial plexus avulsion
    Huang, Chao
    Fu, Chuan
    Qi, Zhi-Ping
    Guo, Wen-Lai
    You, Di
    Li, Rui
    Zhu, Zhe
    ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2020, 48 (01) : 1010 - 1021
  • [19] Influence of LA and GA Sequence in the PLGA Block on the Properties of Thermogelling PLGA-PEG-PLGA Block Copolymers
    Yu, Lin
    Zhang, Zheng
    Ding, Jiandong
    BIOMACROMOLECULES, 2011, 12 (04) : 1290 - 1297
  • [20] Assessment of the Effect of PLGA Co-polymers and PEG on the Formation and Characteristics of PLGA-PEG-PLGA Co-block Polymer Using Statistical Approach
    Sulaiman, Teuku Nanda Saifullah
    Larasati, Dwi
    Nugroho, Akhmad Kharis
    Choiri, Syaiful
    ADVANCED PHARMACEUTICAL BULLETIN, 2019, 9 (03) : 382 - 392