The Planar Turán Number of {K4,C5} and {K4,C6}

被引:0
|
作者
Gyori, Ervin [1 ]
Li, Alan [2 ]
Zhou, Runtian [3 ]
机构
[1] lfred Reny Inst Math, Budapest, Hungary
[2] Amherst Coll, 220 South Pleasant St, Amherst, MA 01002 USA
[3] Duke Univ, 2138 Campus Dr, Durham, NC 27708 USA
关键词
Planar Tur & aacute; n number; Extremal planar graph; Cycle;
D O I
10.1007/s00373-024-02830-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a set of graphs. The planar Tur & aacute;n number, exP(n,H), is the maximum number of edges in an n-vertex planar graph which does not contain any member of H as a subgraph. When H={H} has only one element, we usually write exP(n,H) instead. The topic of extremal planar graphs was initiated by Dowden (2016). He obtained sharp upper bound for both exP(n,C-5) and exP(n,K4). Later on, we obtained sharper bound for exP(n,{K4,C7}). In this paper, we give upper bounds of exP(n, {K-4,C-5}) <= 15/7(n-2) and exP(n,{K-4,C-6}) <= 7/3(n-2). We also give constructions which show the bounds are tight for infinitely many graphs.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Separation of capsular polysaccharide K4 and defructosylated K4 by high-performance capillary electrophoresis
    Volpi, N
    ELECTROPHORESIS, 2004, 25 (4-5) : 692 - 696
  • [32] Factors That Affect The K4 In Indonesia
    Anggraini, Kirana
    Wratsangka, Raditya
    Bantas, Krisnawati
    Fikawati, Sandra
    PROCEEDINGS OF THE 1ST INTERNATIONAL INTEGRATIVE CONFERENCE ON HEALTH, LIFE AND SOCIAL SCIENCES (ICHLAS 2017), 2017, 10 : 134 - 139
  • [33] KIA K4 修炼内功
    李文斌
    汽车与驾驶维修(汽车版), 2015, (02) : 66 - 69
  • [34] KIA K4 过渡句
    白正阳
    白帆
    汽车与驾驶维修(汽车版), 2014, (09) : 34 - 39
  • [35] Pd/C:: A recyclable catalyst for cyanation of aryl halides with K4[Fe(CN)6]
    Zhu, Yi-Zhong
    Cai, Chun
    SYNTHETIC COMMUNICATIONS, 2007, 37 (19-21) : 3359 - 3366
  • [36] Trade Spectrum of K4 − e
    James G. Lefevre
    Graphs and Combinatorics, 2005, 21 : 475 - 488
  • [37] On graphs with no induced subdivision of K4
    Leveque, Benjamin
    Maffray, Frederic
    Trotignon, Nicolas
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (04) : 924 - 947
  • [38] Detecting an induced subdivision of K4
    Ngoc Khang Le
    JOURNAL OF GRAPH THEORY, 2019, 90 (02) : 160 - 171
  • [39] K4(Z) is the trivial group
    Rognes, J
    TOPOLOGY, 2000, 39 (02) : 267 - 281
  • [40] Basic logic, K4, and persistence
    Ruitenburg W.
    Studia Logica, 1999, 63 (3) : 343 - 352