The Planar Turán Number of {K4,C5} and {K4,C6}

被引:0
|
作者
Gyori, Ervin [1 ]
Li, Alan [2 ]
Zhou, Runtian [3 ]
机构
[1] lfred Reny Inst Math, Budapest, Hungary
[2] Amherst Coll, 220 South Pleasant St, Amherst, MA 01002 USA
[3] Duke Univ, 2138 Campus Dr, Durham, NC 27708 USA
关键词
Planar Tur & aacute; n number; Extremal planar graph; Cycle;
D O I
10.1007/s00373-024-02830-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a set of graphs. The planar Tur & aacute;n number, exP(n,H), is the maximum number of edges in an n-vertex planar graph which does not contain any member of H as a subgraph. When H={H} has only one element, we usually write exP(n,H) instead. The topic of extremal planar graphs was initiated by Dowden (2016). He obtained sharp upper bound for both exP(n,C-5) and exP(n,K4). Later on, we obtained sharper bound for exP(n,{K4,C7}). In this paper, we give upper bounds of exP(n, {K-4,C-5}) <= 15/7(n-2) and exP(n,{K-4,C-6}) <= 7/3(n-2). We also give constructions which show the bounds are tight for infinitely many graphs.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [21] ON K3 AND K4 OF THE INTEGERS MOD N
    AISBETT, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (03) : 417 - 420
  • [22] ON K4[BE3O5]
    SCHULDT, D
    HOPPE, R
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1990, 591 (12): : 199 - 208
  • [23] The Chromatic Number of Graphs with No Induced Subdivision of K4
    Chen, Guantao
    Chen, Yuan
    Cui, Qing
    Feng, Xing
    Liu, Qinghai
    GRAPHS AND COMBINATORICS, 2020, 36 (03) : 719 - 728
  • [24] The Ramsey multiplicity of K4
    Piwakowski, K
    Radziszowski, SP
    ARS COMBINATORIA, 2001, 60 : 131 - 135
  • [25] On the chromaticity of K4 homeomorphs
    Ren, HZ
    DISCRETE MATHEMATICS, 2002, 252 (1-3) : 247 - 257
  • [26] 极小(C4,K4;7)-平面图
    段春燕
    世界科技研究与发展, 2014, 36 (06) : 658 - 659
  • [27] SOME EXTENSIONS OF K4
    SEGERBERG, K
    JOURNAL OF SYMBOLIC LOGIC, 1971, 36 (04) : 697 - +
  • [28] 5色K4问题的推广
    方影
    孙庆文
    黄平
    上海师范大学学报(自然科学版), 2010, 39 (04) : 352 - 358
  • [29] K4[PBO4] AND K4[GEO4] - A STRUCTURAL COMPARISON USING SCHLEGEL DIAGRAMS
    HOPPE, R
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1983, 162 (1-4): : 110 - 112
  • [30] 5色K4问题的推广
    方影
    孙庆文
    黄平
    上海师范大学学报(自然科学版), 2010, 39 (自然科学版) : 352 - 358