The Planar Turán Number of {K4,C5} and {K4,C6}

被引:0
|
作者
Gyori, Ervin [1 ]
Li, Alan [2 ]
Zhou, Runtian [3 ]
机构
[1] lfred Reny Inst Math, Budapest, Hungary
[2] Amherst Coll, 220 South Pleasant St, Amherst, MA 01002 USA
[3] Duke Univ, 2138 Campus Dr, Durham, NC 27708 USA
关键词
Planar Tur & aacute; n number; Extremal planar graph; Cycle;
D O I
10.1007/s00373-024-02830-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a set of graphs. The planar Tur & aacute;n number, exP(n,H), is the maximum number of edges in an n-vertex planar graph which does not contain any member of H as a subgraph. When H={H} has only one element, we usually write exP(n,H) instead. The topic of extremal planar graphs was initiated by Dowden (2016). He obtained sharp upper bound for both exP(n,C-5) and exP(n,K4). Later on, we obtained sharper bound for exP(n,{K4,C7}). In this paper, we give upper bounds of exP(n, {K-4,C-5}) <= 15/7(n-2) and exP(n,{K-4,C-6}) <= 7/3(n-2). We also give constructions which show the bounds are tight for infinitely many graphs.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Turán problem for K4−-free signed graphs
    Chen F.
    Yuan X.
    Applied Mathematics and Computation, 2024, 477
  • [2] The toroidal crossing number of K4,n
    Ho, Pak Tung
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3238 - 3248
  • [3] ON (K4, K4 - e)-DESIGNS
    Lindner, Charles C.
    Meszka, Mariusz
    Rosa, Alex
    ARS COMBINATORIA, 2009, 93 : 333 - 340
  • [4] The Ramsey number r(K1,3, C4, K4)
    Klamroth, K
    Mengersen, I
    UTILITAS MATHEMATICA, 1997, 52 : 65 - 81
  • [5] K4 or K5?
    不详
    BRITISH JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 1996, 103 (09): : R7 - R7
  • [6] THE RAMSEY NUMBERS R(K2+KSAR3,K4) AND R(K1+C4,K4)
    HENDRY, GRT
    UTILITAS MATHEMATICA, 1989, 35 : 40 - 54
  • [7] On the Number of Simple K4 Groups
    Zhang, Shaohua
    Shi, Wujie
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (06) : 1669 - 1674
  • [8] The crossing number of K4,n on the real projective plane
    Ho, PT
    DISCRETE MATHEMATICS, 2005, 304 (1-3) : 23 - 33
  • [9] A new labeling of C2n proves that K4 + M6n decomposes K6n+4
    Vu Dinh Hoa
    Rosenfeld, Moshe
    ARS COMBINATORIA, 2018, 139 : 255 - 267
  • [10] Determining the spectrum of Meta(K4 + e &gt; K4, λ) for any λ
    Chang, Yanxun
    Lo Faro, Giovanni
    Tripodi, Antoinette
    DISCRETE MATHEMATICS, 2008, 308 (2-3) : 439 - 456