Comprehensive Review of Compressed Air Energy Storage (CAES) Technologies

被引:50
|
作者
Rabi, Ayah Marwan [1 ]
Radulovic, Jovana [1 ]
Buick, James M. [1 ]
机构
[1] Univ Portsmouth, Sch Mech & Design Engn, Portsmouth PO1 3DJ, England
来源
THERMO | 2023年 / 3卷 / 01期
关键词
compressed air energy storage; adiabatic compressed air energy storage; advanced adiabatic compressed air energy storage; ocean compressed air energy storage; isothermal compressed air energy storage; PHASE-CHANGE MATERIALS; LIQUID-FLOODED COMPRESSION; PILOT-SCALE DEMONSTRATION; GAS-TURBINE; THERMODYNAMIC ANALYSIS; EFFICIENCY ANALYSIS; HIGH-TEMPERATURE; RESIDENTIAL BUILDINGS; SCROLL MACHINES; SYSTEM;
D O I
10.3390/thermo3010008
中图分类号
O414.1 [热力学];
学科分类号
摘要
As renewable energy production is intermittent, its application creates uncertainty in the level of supply. As a result, integrating an energy storage system (ESS) into renewable energy systems could be an effective strategy to provide energy systems with economic, technical, and environmental benefits. Compressed Air Energy Storage (CAES) has been realized in a variety of ways over the past decades. As a mechanical energy storage system, CAES has demonstrated its clear potential amongst all energy storage systems in terms of clean storage medium, high lifetime scalability, low self-discharge, long discharge times, relatively low capital costs, and high durability. However, its main drawbacks are its long response time, low depth of discharge, and low roundtrip efficiency (RTE). This paper provides a comprehensive review of CAES concepts and compressed air storage (CAS) options, indicating their individual strengths and weaknesses. In addition, the paper provides a comprehensive reference for planning and integrating different types of CAES into energy systems. Finally, the limitations and future perspectives of CAES are discussed.
引用
收藏
页码:104 / 126
页数:23
相关论文
共 50 条
  • [31] Characteristics of air cooling for cold storage and power recovery of compressed air energy storage (CAES) with inter-cooling
    Liu, Xinghua
    Zhang, Yufeng
    Shen, Jiang
    Yao, Sheng
    Zhang, Ziqiang
    APPLIED THERMAL ENGINEERING, 2016, 107 : 1 - 9
  • [32] A comprehensive review of liquid piston compressed air energy storage for sustainable renewable energy integration
    Hao, Fuxiang
    Mu, Anle
    Lv, Zhongnan
    Zhou, Hanyang
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [33] Comprehensive analysis of a novel integration of a biomass-driven combined heat and power plant with a compressed air energy storage (CAES)
    Lashgari, Fatemeh
    Arabkoohsar, Ahmad
    Babaei, Seyed Mostafa
    Pedram, Mona Zamani
    ENERGY CONVERSION AND MANAGEMENT, 2022, 255
  • [34] A comprehensive performance comparison between compressed air energy storage and compressed carbon dioxide energy storage
    Li, Hanchen
    Ding, Ruochen
    Su, Wen
    Lin, Xinxing
    Guan, Sumin
    Ye, Qingping
    Zheng, Zhimei
    Wang, Jiaqiang
    ENERGY CONVERSION AND MANAGEMENT, 2024, 319
  • [35] An iterative method for evaluating air leakage from unlined compressed air energy storage (CAES) caverns
    Zhou, Yu
    Xia, Caichu
    Zhao, Haibin
    Mei, Songhua
    Zhou, Shuwei
    RENEWABLE ENERGY, 2018, 120 : 434 - 445
  • [36] A review of compressed-air energy storage
    Yu, Qihui
    Wang, Qiancheng
    Tan, Xin
    Fang, Guihua
    Meng, Jianguo
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2019, 11 (04)
  • [37] Dynamic simulation of a Re-compressed adiabatic compressed air energy storage (RA-CAES) system
    Chen, Longxiang
    Zhang, Liugan
    Yang, Huipeng
    Xie, Meina
    Ye, Kai
    ENERGY, 2022, 261
  • [38] Energy and thermodynamical study of a small innovative compressed air energy storage system (micro-CAES)
    Vollaro, Roberto De Lieto
    Faga, Francesco
    Tallini, Alessandro
    Cedola, Luca
    Vallati, Andrea
    70TH CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION, ATI2015, 2015, 82 : 645 - 651
  • [39] A review of thermal energy storage in compressed air energy storage system
    Zhou, Qian
    Du, Dongmei
    Lu, Chang
    He, Qing
    Liu, Wenyi
    ENERGY, 2019, 188
  • [40] Airtightness evaluation of compressed air energy storage (CAES) salt caverns in bedded rock salt
    Fang, Jiangyu
    Ma, Hongling
    Yang, Chunhe
    Li, Hang
    Zeng, Zhen
    Zhu, Shijie
    Wang, Xuan
    Nong, Xiaoli
    JOURNAL OF ENERGY STORAGE, 2024, 102